blob: accb70513ed5cd9d537feea2ae65fe7990c4823c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
\subsection{The \moc{bivact} dependent records on a
\dir{tracking} directory}\label{sect:bivactrackingdir}
When the \moc{BIVACT:} operator is used ($\mathsf{CDOOR}$={\tt 'BIVAC'}), the following elements in the vector
$\mathcal{S}^{t}_{i}$ will also be defined.
\begin{itemize}
\item $\mathcal{S}^{t}_{6}$: ({\tt ITYPE}) Type of BIVAC geometry:
\begin{displaymath}
\mathcal{S}^{t}_{6} = \left\{
\begin{array}{rl}
2 & \textrm{Cartesian 1-D geometry} \\
3 & \textrm{Tube 1-D geometry} \\
4 & \textrm{Spherical 1-D geometry} \\
5 & \textrm{Cartesian 2-D geometry} \\
6 & \textrm{Tube 2-D geometry} \\
8 & \textrm{Hexagonal 2-D geometry}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{t}_{7}$: ({\tt IHEX}) Type of hexagonal symmetry if $\mathcal{S}^{t}_{6}= 8$:
\begin{displaymath}
\mathcal{S}^{t}_{7} = \left\{
\begin{array}{rl}
0 & \textrm{non-hexagonal geometry} \\
1 & \textrm{S30} \\
2 & \textrm{SA60} \\
3 & \textrm{SB60} \\
4 & \textrm{S90} \\
5 & \textrm{R120} \\
6 & \textrm{R180} \\
7 & \textrm{SA180} \\
8 & \textrm{SB180} \\
9 & \textrm{COMPLETE}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{t}_{8}$: ({\tt IELEM}) Type of finite elements:
\begin{displaymath}
\mathcal{S}^{t}_{8} = \left\{
\begin{array}{rl}
<0 & \textrm{Order $-\mathcal{S}^{t}_{8}$ primal finite elements} \\
>0 & \textrm{Order $\mathcal{S}^{t}_{8}$ dual finite elements. The Thomas-Raviart or Thomas-Raviart-Schneider} \\
& \textrm{method is used except if $\mathcal{S}^{t}_{9}=4$ in which case a mesh-centered finite difference} \\
& \textrm{approximation is used}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{t}_{9}$: ({\tt ICOL}) Type of quadrature used to integrate
the mass matrix:
\begin{displaymath}
\mathcal{S}^{t}_{9} = \left\{
\begin{array}{rl}
1 & \textrm{Analytical integration} \\
2 & \textrm{Gauss-Lobatto quadrature (finite difference/collocation method)} \\
3 & \textrm{Gauss-Legendre quadrature (superconvergent approximation)} \\
4 & \textrm{mesh-centered finite difference approximation in hexagonal geometry}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{t}_{10}$: ({\tt ISPLH}) Type of hexagonal mesh splitting:
\begin{displaymath}
\mathcal{S}^{t}_{10} = \left\{
\begin{array}{rl}
1 & \textrm{No mesh splitting}; \emph{or} \\
& \textrm{$3$ lozenges per hexagon with Thomas-Raviart-Schneider approximation} \\
K & \textrm{$6\times(K-1)\times(K-1)$ triangles per hexagon with finite-difference approximations} \\
& \textrm{$3\times K \times K$ lozenges per hexagon with Thomas-Raviart-Schneider approximation}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{t}_{11}$: ({\tt LL4}) Order of the group-wise matrices.
Generally equal to
$\mathcal{S}^{t}_{2}$ except in cases where averaged fluxes are appended to the
unknown vector. $\mathcal{S}^{t}_{11}\le\mathcal{S}^{t}_{2}$.
\item $\mathcal{S}^{t}_{12}$: ({\tt LX}) Number of elements along the $X$ axis in Cartesian geometry or number of
hexagons.
\item $\mathcal{S}^{t}_{13}$: ({\tt LY}) Number of elements along the $Y$ axis.
\item $\mathcal{S}^{t}_{14}$: ({\tt NLF}) Number of components in the angular expansion of the flux. Must be a positive
even number. Set to zero for diffusion theory. Set to 2 for $P_1$ method.
\item $\mathcal{S}^{t}_{15}$: ({\tt ISPN}) Type of transport approximation if {\tt NLF}$\ne 0$:
\begin{displaymath}
\mathcal{S}^{t}_{15} = \left\{
\begin{array}{rl}
0 & \textrm{Complete $P_n$ approximation of order {\tt NLF}$-1$} \\
1 & \textrm{Simplified $P_n$ approximation of order {\tt NLF}$-1$}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{t}_{16}$: ({\tt ISCAT}) Number of terms in the scattering sources if {\tt NLF}$\ne 0$:
\begin{displaymath}
\mathcal{S}^{t}_{16} = \left\{
\begin{array}{rl}
1 & \textrm{Isotropic scattering in the laboratory system} \\
2 & \textrm{Linearly anisotropic scattering in the laboratory system} \\
$n$ & \textrm{order $n-1$ anisotropic scattering in the laboratory system}
\end{array} \right.
\end{displaymath}
\noindent A negative value of $\mathcal{S}^{t}_{16}$ indicates that $1/3D^{g}$ values are used as $\Sigma_1^{g}$ cross sections.
\item $\mathcal{S}^{t}_{17}$: ({\tt NVD}) Number of base points in the Gauss-Legendre quadrature used to integrate
void boundary conditions if {\tt ICOL} $=3$ and {\tt NLF}$\ne 0$:
\begin{displaymath}
\mathcal{S}^{t}_{17} = \left\{
\begin{array}{rl}
0 & \textrm{Use a ({\tt NLF}$+1$)--point quadrature consistent with $P_{{\rm NLF}-1}$ theory} \\
1 & \textrm{Use a {\tt NLF}--point quadrature consistent with $S_{\rm NLF}$ theory} \\
2 & \textrm{Use an analytical integration consistent with diffusion theory}
\end{array} \right.
\end{displaymath}
\end{itemize}
\goodbreak
The following records will also be present on the main level of a \dir{tracking}
directory.
\begin{DescriptionEnregistrement}{The \moc{bivact} records in
\dir{tracking}}{8.0cm}
\IntEnr
{NCODE\blank{7}}{$6$}
{Record containing the types of boundary conditions on each surface. =0 side
not used; =1 VOID; =2 REFL; =4 TRAN; =5 SYME; =7 ZERO. {\tt NOODE(5)} and
{\tt NOODE(6)} are not used.}
\RealEnr
{ZCODE\blank{7}}{$6$}{$1$}
{Record containing the albedo value (real number) on each surface. {\tt ZOODE(5)}
and {\tt ZOODE(6)} are not used.}
\OptRealEnr
{SIDE\blank{8}}{$1$}{$\mathcal{S}^{t}_{6}=8$}{cm}
{Side of a hexagon.}
\OptRealEnr
{XX\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}\ne 8$}{cm}
{Element-ordered $X$-directed mesh spacings after mesh-splitting for type 2
and 5 geometries. Element-ordered radius after mesh-splitting for type 3
and 6 geometries.}
\OptRealEnr
{YY\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=5 \ {\rm or} \ 6$}{cm}
{Element-ordered $Y$-directed mesh spacings after mesh-splitting for type 5
and 6 geometries.}
\OptRealEnr
{DD\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=3 \ {\rm or} \ 6$}{cm}
{Element-ordered position used with type 3 and 6 geometries.}
\IntEnr
{KN\blank{10}}{$N_{\rm kn}\times\mathcal{S}^{t}_{1}$}
{Element-ordered unknown list. $N_{\rm kn}$ is the number of unknowns per element.}
\RealEnr
{QFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{}
{Element-ordered boundary condition. $N_{\rm surf}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.}
\IntEnr
{IQFR\blank{8}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}
{Element-ordered physical albedo indices. $N_{\rm surf}=4$ in Cartesian geometry and $=6$ in hexagonal geometry.}
\RealEnr
{BFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{}
{Element-ordered boundary surface fractions.}
\IntEnr
{MU\blank{10}}{$\mathcal{S}^{t}_{11}$}
{Indices used with compressed diagonal storage mode matrices.}
\OptIntEnr
{IPERT\blank{7}}{$\mathcal{S}^{t}_{12}\times (\mathcal{S}^{t}_{10})^2$}{*}
{Mixture permutation index. This information is provided if and only if $\mathcal{S}^{t}_{6}=8, \ \mathcal{S}^{t}_{8}>0 \ {\rm and} \
\mathcal{S}^{t}_{9}\le 3$.}
\DirEnr
{BIVCOL\blank{6}}
{Sub-directory containing the unit matrices (mass, stiffness, nodal coupling,
etc.) for a finite element discretization.}
\end{DescriptionEnregistrement}
\goodbreak
The following records will be present on the \moc{/BIVCOL/} sub-directory:
\begin{DescriptionEnregistrement}{Description of the \moc{/BIVCOL/} sub-directory}{8.0cm}
\RealEnr
{T\blank{11}}{$L$}{}
{Cartesian linear product vector. $L=|\mathcal{S}^{t}_{8}|+1$}
\RealEnr
{TS\blank{10}}{$L$}{}
{Cylindrical linear product vector.}
\RealEnr
{R\blank{11}}{$L\times L$}{}
{Cartesian mass matrix.}
\RealEnr
{RS\blank{10}}{$L\times L$}{}
{Cylindrical mass matrix.}
\RealEnr
{Q\blank{11}}{$L\times L$}{}
{Cartesian stiffness matrix.}
\RealEnr
{QS\blank{10}}{$L\times L$}{}
{Cylindrical stiffness matrix.}
\RealEnr
{V\blank{11}}{$L\times (L-1)$}{}
{Nodal coupling matrix.}
\RealEnr
{H\blank{11}}{$L\times (L-1)$}{}
{Piolat transform coupling matrix (used with Thomas-Raviart-Schneider method).}
\RealEnr
{E\blank{11}}{$L\times L$}{}
{Polynomial coefficients.}
\RealEnr
{RH\blank{10}}{6$\times$6}{}
{Hexagonal mass matrix.}
\RealEnr
{QH\blank{10}}{6$\times$6}{}
{Hexagonal stiffness matrix.}
\RealEnr
{RT\blank{10}}{3$\times$3}{}
{Triangular mass matrix.}
\RealEnr
{QT\blank{10}}{3$\times$3}{}
{Triangular stiffness matrix.}
\end{DescriptionEnregistrement}
\eject
|