1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
\section{Contents of a \dir{asminfo} directory}\label{sect:asminfodir}
This directory contains the multigroup collision probabilities and response matrices
required in the solution of the transport equation.
\subsection{State vector content for the \dir{asminfo} data structure}\label{sect:asminfostate}
The dimensioning parameters for this data structure, which are stored in the state vector
$\mathcal{S}^{a}_{i}$, represent:
\begin{itemize}
\item The type of collision probabilities considered $I_{T}=\mathcal{S}^{a}_{1}$ where
\begin{displaymath}
I_{T} = \left\{
\begin{array}{rl}
1 & \textrm{Scattering reduced collision probability or response matrix}\\
2 & \textrm{Direct collision probability or response matrix} \\
3 & \textrm{Scattering reduced directional collision probability} \\
4 & \textrm{Direct directional collision probability}
\end{array} \right.
\end{displaymath}
\item The type of collision probability closure relation used $I_{C}=\mathcal{S}^{a}_{2}$
(see \moc{NORM} keyword in \moc{ASM:} operator input option)
\begin{displaymath}
I_{C} = \left\{
\begin{array}{rl}
0 & \textrm{Total reflection closure relation} \\
1 & \textrm{No closure relation used}
\end{array} \right.
\end{displaymath}
\item A parameter related to the albedo leakage model $I_{\beta}=\mathcal{S}^{a}_{3}$
(see \moc{ALSB} keyword in \moc{ASM:} operator input option)
\begin{displaymath}
I_{\beta} = \left\{
\begin{array}{rl}
0 & \textrm{Groupwise escape matrices \moc{WIS} are stored} \\
1 & \textrm{No information is stored}
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{a}_{4}$ (not used)
\item The option to indicate whether response matrix or collision probability matrices are stored
on the structure $I_{p}=\mathcal{S}^{a}_{5}$ (see \moc{PIJ} and \moc{ARM}
keyword in \moc{ASM:} operator input option)
\begin{displaymath}
I_{p} = \left\{
\begin{array}{rl}
1 & \textrm{Response matrices will be stored (the \moc{ARM} keyword was
selected)} \\
2 & \textrm{Collision probability matrices will be stored (the \moc{PIJ} keyword was
selected)}
\end{array} \right.
\end{displaymath}
\item The option to indicate the type of streaming model used $I_{k}=\mathcal{S}^{a}_{6}$ (see \moc{PIJK} and \moc{ECCO}
keyword in \moc{ASM:} operator input option)
\begin{displaymath}
I_{k} = \left\{
\begin{array}{rl}
1 & \textrm{No streaming model used (a leakage model may or may not be used)} \\
2 & \textrm{Isotropic streaming model used (ECCO model)} \\
3 & \textrm{Anisotropic streaming model used (TIB\`ERE model)}
\end{array} \right.
\end{displaymath}
\item The type of collision probability normalization method used $I_{n}=\mathcal{S}^{a}_{7}$ (see
\moc{PNOR} keyword in \moc{ASM:} operator input option)
\begin{displaymath}
I_{n} = \left\{
\begin{array}{rl}
0 & \textrm{No normalization} \\
1 & \textrm{Gelbard normalization algorithm} \\
2 & \textrm{Diagonal element normalization} \\
3 & \textrm{Non-linear normalization} \\
4 & \textrm{Helios type normalization}
\end{array} \right.
\end{displaymath}
\item Number of energy groups
$G=\mathcal{S}^{a}_{8}$
\item Number of unknown in flux system $N_{u}=\mathcal{S}^{a}_{9}$
\item Number of mixtures $N_{m}=\mathcal{S}^{a}_{10}$
\item Number of Legendre orders of the scattering cross sections used in the
main transport solution. $N_{\rm ans}=\mathcal{S}^{a}_{11}$
\item Flag for the availability of diffusion coefficients. $I_{\rm diff}=\mathcal{S}^{a}_{12}$
\begin{displaymath}
I_{\rm diff} = \left\{
\begin{array}{rl}
0 & \textrm{No diffusion coefficients available;} \\
1 & \textrm{Diffusion coefficients are available.}
\end{array} \right.
\end{displaymath}
\item Type of equation solved. $I_{\rm bfp}=\mathcal{S}^{a}_{13}$
\begin{displaymath}
\mathcal{S}^{t}_{13} = \left\{
\begin{array}{rl}
0 & \textrm{Boltzmann transport equation} \\
1 & \textrm{Boltzmann Fokker-Planck equation with Galarkin energy propagation factors} \\
2 & \textrm{Boltzmann Fokker-Planck equation with Przybylski and Ligou energy propagation} \\
& \textrm{factors.}
\end{array} \right.
\end{displaymath}
\end{itemize}
\subsection{The main \dir{asminfo} directory}\label{sect:asminfodirmain}
On its first level, the
following records and sub-directories will be found in the \dir{asminfo} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{asminfo}}{8.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_PIJ\blank{7}}).}
\CharEnr
{LINK.MACRO\blank{2}}{$*12$}
{Name of the {\sc macrolib} on which the collision probabilities are based.}
\CharEnr
{LINK.TRACK\blank{2}}{$*12$}
{Name of the {\sc tracking} on which the collision probabilities are based.}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{a}_{i}$,
as defined in \Sect{asminfostate}.}
\CharEnr
{TRACK-TYPE\blank{2}}{$*12$}
{Type of tracking considered ($\mathsf{CDOOR}$). Allowed values are:
{\tt 'EXCELL'}, {\tt 'SYBIL'}, {\tt 'MCCG'}, {\tt 'SN'}, {\tt 'BIVAC'} and {\tt 'TRIVAC'}.}
\DirlEnr
{GROUP\blank{7}}{$\mathcal{S}^{a}_{8}$}
{List of energy-group sub-directories. Each component of the list is a directory containing
the multigroup collision probabilities and response matrices associated with an energy group.
The specification of this directory is given in Sect.~\ref{sect:asminfodhdirgroup} or~\ref{sect:asminfodirgroup}
depending if a double-heterogeneity is present or not. A double-heterogeneity is present if $\mathcal{S}^{t}_{40}=1$
in the {\sc tracking} object.}
\end{DescriptionEnregistrement}
\clearpage
\subsection{The \moc{GROUP} double-heterogeneity group sub-directory}\label{sect:asminfodhdirgroup}
This directory is containing the following records, corresponding to a single energy group:
\begin{DescriptionEnregistrement}{Records and sub-directories in \moc{GROUP}}{7.0cm}
\RealEnr
{DRAGON-TXSC\blank{1}}{$N_{m}+1$}{cm$^{-1}$}
{where $N_{m}=\mathcal{P}_{1}$. The total cross section $\Sigma_{m}^{g}$ for $N_{m}+1$ composite mixtures assuming that the first mixture
represents void ($\Sigma_{m}^{g}=0$). A transport correction may or may not
be included. The first component of this array is always equal to 0.}
\RealEnr
{DRAGON-S0XSC}{$N_{m}+1,N_{\rm ans}$}{cm$^{-1}$}
{The within group scattering cross section $\Sigma_{0,m,w}$ (see \Sect{macrolibdirgroup})
for $N_{m}+1$ composite mixtures assuming that the first mixture
represents void ($\Sigma_{0,m,w}^{g}=0$). A transport correction may or may not
be included. Many Legendre orders may be given. The first component of this
array, for each Legendre order, is always equal to 0.}
\IntEnr
{NCO\blank{9}}{${\cal M}$}
{where ${\cal M}=\mathcal{P}_{2}-\mathcal{P}_{1}$. Number of composite mixtures in each macro-mixture.}
\OptRealEnr
{RRRR\blank{8}}{${\cal M}$}{$\mathcal{P}_{6}=1,2$}{}
{Group-dependent double-heterogeneity information.}
\OptRealEnr
{QKOLD\blank{7}}{$\mathcal{P}_{4},\mathcal{P}_{5},{\cal M}$}{$\mathcal{P}_{6}=1$}{}
{Group-dependent double-heterogeneity information related to the escape probabilities in the micro-structures.}
\OptRealEnr
{QKDEL\blank{7}}{$\mathcal{P}_{4},\mathcal{P}_{5},{\cal M}$}{$\mathcal{P}_{6}=1,2$}{}
{Group-dependent double-heterogeneity information related to the escape probabilities in the micro-structures.}
\OptRealEnr
{PKL\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{5},\mathcal{P}_{5},{\cal M}$}{$\mathcal{P}_{6}=1,2$}{}
{Group-dependent double-heterogeneity information related to the collision probabilities in the micro-structures.}
\OptDbleEnr
{COEF\blank{8}}{${\cal F},{\cal F},{\cal M}$}{$\mathcal{P}_{6}=1,2$}{}
{where ${\cal F}=1+\mathcal{P}_{4}\times\mathcal{P}_{5}$. Group-dependent double-heterogeneity information.}
\OptRealEnr
{P1I\blank{9}}{$\mathcal{P}_{4},{\cal M}$}{$\mathcal{P}_{6}=3$}{}
{Group-dependent double-heterogeneity information related to the escape probabilities through the composite.}
\OptRealEnr
{P1DI\blank{8}}{$\mathcal{P}_{4},{\cal M}$}{$\mathcal{P}_{6}=3$}{}
{Group-dependent double-heterogeneity information related to the escape probabilities from the matrix.}
\OptRealEnr
{P1KI\blank{8}}{$\mathcal{P}_{4},\mathcal{P}_{5},{\cal M}$}{$\mathcal{P}_{6}=3$}{}
{Group-dependent double-heterogeneity information related to the escape probabilities from the micro-structures.}
\OptRealEnr
{SIGA1\blank{7}}{$\mathcal{P}_{4},{\cal M}$}{$\mathcal{P}_{6}=3$}{}
{Group-dependent double-heterogeneity information related to the equivalent total cross-section.}
\DirEnr
{BIHET\blank{7}}
{Directory containing collision probability or response matrix information related to the macro-geometry (i.$\,$e.,
the geometry with homogenized micro-structures). The specification of this directory is given in \Sect{asminfodirgroup}.
Note that the value of $N_{m}=\mathcal{P}_{2}$ in this object is set to take into account the macro-mixtures. Similarly,
the value $N_{r}=\mathcal{P}_{3}$ is the number of macro-volumes.}
\end{DescriptionEnregistrement}
\vskip -0.5cm
\subsection{The \moc{GROUP} or \moc{BIHET} group sub-directory}\label{sect:asminfodirgroup}
This directory is containing the following records, corresponding to a single energy group:
\begin{DescriptionEnregistrement}{Records and sub-directories in \moc{GROUP}}{7.0cm}
\OptRealEnr
{ALBEDO\blank{6}}{$\mathcal{S}^{M}_{8}$}{$\mathcal{S}^{M}_{8}>0$}{}
{Surface ordered physical albedos in \moc{GROUP}. The number of physical albedos $\mathcal{S}^{M}_{8}$ is defined
in \Sect{macrolibstate}.}
\OptRealEnr
{ALBEDO-FU\blank{3}}{$\mathcal{S}^{M}_{8}$}{$\mathcal{S}^{M}_{8}>0$}{}
{Surface ordered physical albedo functions in \moc{GROUP}. The number of physical albedos $\mathcal{S}^{M}_{8}$ is defined
in \Sect{macrolibstate}.}
\RealEnr
{DRAGON-TXSC\blank{1}}{$N_{m}+1$}{cm$^{-1}$}
{The total cross section $\Sigma_{m}^{g}$ for $N_{m}+1$ mixtures assuming that the first mixture
represents void ($\Sigma_{m}^{g}=0$). A transport correction may or may not
be included. The first component of this array is always equal to 0.}
\OptRealEnr
{DRAGON-T1XSC}{$N_{m}+1$}{*}{cm$^{-1}$}
{where $N_{m}=\mathcal{P}_{1}$. The current-weighted total cross section $\Sigma_{1,m}^{g}$ for $N_{m}+1$ composite mixtures assuming that the first mixture
represents void ($\Sigma_{1,m}^{g}=0$). The first component of this array is always equal to 0.}
\OptRealEnr
{DRAGON-T2XSC}{$N_{m}+1$}{*}{cm$^{-1}$}
{where $N_{m}=\mathcal{P}_{1}$. The second moment-weighted total cross section $\Sigma_{2,m}^{g}$ for $N_{m}+1$ composite mixtures assuming that the first mixture
represents void ($\Sigma_{2,m}^{g}=0$). The first component of this array is always equal to 0.}
\RealEnr
{DRAGON-S0XSC}{$N_{m}+1,N_{\rm ans}$}{cm$^{-1}$}
{The within group scattering cross section $\Sigma_{0,m,w}$ (see \Sect{macrolibdirgroup})
for $N_{m}+1$ mixtures assuming that the first mixture
represents void ($\Sigma_{0,m,w}^{g}=0$). A transport correction may or may not
be included. Many Legendre orders may be given. The first component of this
array, for each Legendre order, is always equal to 0.}
\OptRealEnr
{DRAGON-DIFF\blank{1}}{$N_{m}+1$}{$I_{\rm diff}=1$}{cm}
{Diffusion coefficients $D_{m}^{g}$ for $N_{m}+1$ mixtures assuming that the first mixture
represents void ($D_{m}^{g}=1.0\times 10^{10}$). The first component of this array is always equal to $1.0\times 10^{10}$.}
\OptRealEnr
{FUNKNO\$USS\blank{2}}{$N_{U}$}{*}{1}
{Solution of the Livolant-Jeanpierre fine-structure equation. $N_{U}$ is the number of unknowns in each subgroup and each energy group. (*) This information is
present if the flux is computed within module {\tt USS:}.}
\OptDirEnr
{STREAMING\blank{3}}{$I_{k}=2$}
{Directory containing P1 information to be used with the ECCO isotropic
streaming model. This directory uses the same specification as \moc{GROUP}
where P0 information is replaced with P1 information. Cross sections
used in this directory are {\sl not}--transport corrected.}
\end{DescriptionEnregistrement}
Additional records are provided to support Boltzmann Fokker-Planck (BFP) solutions:
\begin{DescriptionEnregistrement}{BFP records in \moc{GROUP}}{7.0cm}
\OptRealEnr
{DRAGON-ESTOP}{$N_{m}+1,2$}{$I_{\rm bfp}>0$}{MeV cm$^{-1}$}
{Initial and final stopping power.}
\OptRealEnr
{DRAGON-EMOMT}{$N_{m}+1$}{$I_{\rm bfp}>0$}{cm$^{-1}$}
{Restricted momentum transfer cross section. }
\OptRealEnr
{DRAGON-DELTE}{$1$}{$I_{\rm bfp}>0$}{MeV}
{Energy width of the energy group.}
\OptIntEnr
{DRAGON-ISLG\blank{1}}{$1$}{$I_{\rm bfp}>0$}
{Integer set to 0 in energy groups $< G$ and set to 1 in energy group $G$.}
\end{DescriptionEnregistrement}
\vskip -0.5cm
\subsubsection{The \moc{trafict} dependent records on a \moc{GROUP} directory}\label{sect:traficgrpdiringdir}
If a collision probability method is used, the following records will also be
found on the group sub-directory:
\begin{DescriptionEnregistrement}{Collision probability records in \moc{GROUP}}{7.0cm}
\OptRealEnr
{DRAGON-PCSCT}{$N_{r},N_{r}$}{$I_{p}=2$}{}
{The scattering-reduced ($I_{T}=1,3$) collision probability matrix ${\bf W}_{g}$ or direct
($I_{T}=2,4$) collision probability matrix ${\bf p}_{g}$}
\OptRealEnr
{DRAGON1PCSCT}{$N_{r},N_{r}$}{$I_{k}=3$}{}
{The $x-$directed P1 scattering-reduced ($I_{T}=3$) collision probability matrix ${\bf Y}_{x,g}$
or direct ($I_{T}=4$) collision probability matrix ${\bf p}_{x,g}$}
\OptRealEnr
{DRAGON2PCSCT}{$N_{r},N_{r}$}{$I_{k}=3$}{}
{The $y-$directed P1 scattering-reduced ($I_{T}=3$) collision probability matrix ${\bf Y}_{y,g}$
or direct ($I_{T}=4$) collision probability matrix ${\bf p}_{y,g}$}
\OptRealEnr
{DRAGON3PCSCT}{$N_{r},N_{r}$}{$I_{k}=3$}{}
{The $z-$directed P1 scattering-reduced ($I_{T}=3$) collision probability matrix ${\bf Y}_{z,g}$
or direct ($I_{T}=4$) collision probability matrix ${\bf p}_{z,g}$}
\OptRealEnr
{DRAGON1P*SCT}{$N_{r},N_{r}$}{$I_{k}=3$}{}
{The $x-$directed matrix ${\bf p}_g^{-1}{\bf p}_{x,g}^*$}
\OptRealEnr
{DRAGON2P*SCT}{$N_{r},N_{r}$}{$I_{k}=3$}{}
{The $y-$directed matrix ${\bf p}_g^{-1}{\bf p}_{y,g}^*$}
\OptRealEnr
{DRAGON3P*SCT}{$N_{r},N_{r}$}{$I_{k}=3$}{}
{The $z-$directed matrix ${\bf p}_g^{-1}{\bf p}_{z,g}^*$}
\OptRealEnr
{DRAGON-WIS\blank{2}}{$N_{r}$}{$I_{\beta}=1$}{}
{The scattering-reduced leakage matrix $W_{is}^{g}$ }
\end{DescriptionEnregistrement}
\goodbreak
\noindent where
\begin{itemize}
\item the reduced collision probability matrix is defined as
$${\bf p}_{g}=\{p_{ij,g}\> ;\> \forall i \ {\rm and} \ j \}$$
\item the reduced directional probability matrix, used in the first
TIB\`ERE equation, is defined as
$${\bf p}_{k,g}^*=\{p_{ij,k,g}^*\> ;\> \forall i \ {\rm and} \ j \} \ \ ; \ \
k=x, \ y, \ {\rm or } \ z$$
\item the reduced directional probability matrix, used in the second
TIB\`ERE equation, is defined as
$${\bf p}_{k,g}=\{p_{ij,k,g}\> ;\> \forall i \ {\rm and} \ j \} \ \ ; \ \
k=x, \ y, \ {\rm or } \ z \ \ \ .$$
The total cross sections used to compute this matrix are {\sl not}--transport
corrected.
\item the P0 scattering reduced collision probability matrix is defined as
$${\bf W}_{g}=[{\bf I}-{\bf p}_{g} \ {\bf\Sigma}_{{\rm s}0,g\gets g}]^{-1} {\bf p}_{g}$$
\item the P1 scattering reduced directionnal collision probability matrix is defined as
$${\bf Y}_{k,g}=[{\bf I}-{\bf p}_{k,g} \ {\bf\Sigma}_{{\rm s}1,g\gets g}]^{-1} {\bf p}_{k,g} \ \ ; \ \
k=x, \ y, \ {\rm or } \ z$$
\end{itemize}
\eject
\input{SectDasmsybil.tex} % Description of Sybil response matrices
\input{SectDasmmccg.tex} % Description of MCCG response matrices
|