1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
\subsection{The {\tt BREF:} module}\label{sect:BREFData}
This module compute a {\sc macrolib} for a 1D {\sl equivalent reflector} based on various models. One or many fine-group and
fine-mesh reference calculations (using the $S_n$ method) are first performed so as to produce coarse-group and
coarse-mesh Macrolibs stored within output {\sc edition} objects (\dusa{EDIT\_SN}), compatible with the selected
reflector model. Module {\tt BREF:} recovers the $S_n$ {\sc geometry}, depicted in Fig.~\ref{fig:bref}, from object \dusa{GEOM\_SN}.
The $S_n$ {\sc geometry} must have a reflective ({\tt REFL} or {\tt ALBE 1.0}) boundary condition on its left ({\tt X-}) boundary.
Module {\tt BREF:} recovers the following information from each \dusa{EDIT\_SN} object:
\begin{itemize}
\item Coarse group surfacic fluxes between the nodes using averaged flux values recovered into {\sl gap} volumes, corresponding to
tiny meshes in the reflector zones.
\item Coarse group net currents between the nodes obtained from a balance relation, assuming reflection on the left
boundary.
\item Averaged macroscopic cross sections and diffusion coefficients within the {\sl no-gap} homogenized nodes.
\end{itemize}
\begin{figure}[h!]
\begin{center}
\epsfxsize=11cm
\centerline{ \epsffile{bref_geom.eps}}
\parbox{14cm}{\caption{Definition of geometries used by the {\tt BREF:} module}
\label{fig:bref}}
\end{center}
\end{figure}
At output, a {\sc macrolib} object is produced with equivalent macroscopic cross sections, diffusion coefficients, discontinuity factors and
albedos. A verification calculation performed over the {\tt BREF:} geometry is depicted in Fig.~\ref{fig:brefVerif},
\begin{figure}[h!]
\begin{center}
\epsfxsize=15cm
\centerline{ \epsffile{ErmBeavrsPwrRefl.eps}}
\parbox{14cm}{\caption{Equivalent ERM-NEM reflector for the BEAVRS benchmark}
\label{fig:brefVerif}}
\end{center}
\end{figure}
\vskip 0.02cm
Nodal expansion base functions are used to represent the flux with the {\tt DF-NEM} and {\tt ERM-NEM}
methods. By default, polynomials defined over $(-0.5,0.5)$ are used as base functions:\cite{nestle}
\begin{eqnarray}
\nonumber P_0(u)\negthinspace &=&\negthinspace 1\\
\nonumber P_1(u)\negthinspace &=&\negthinspace u\\
\nonumber P_2(u)\negthinspace &=&\negthinspace 3u^2-{1\over 4}\\
\nonumber P_3(u)\negthinspace &=&\negthinspace \left( u^2-{1\over 4}\right)u\\
P_4(u)\negthinspace &=&\negthinspace \left( u^2-{1\over 4}\right)\left( u^2-{1\over 20}\right)
\end{eqnarray}
There is the option of using hyperbolic functions in some energy groups:
\begin{eqnarray}
\nonumber P_3(u)\negthinspace &=&\negthinspace \sinh(\zeta_g u)\\
P_4(u)\negthinspace &=&\negthinspace \cosh(\zeta_g u)-{2\over \zeta}\, \sinh(\zeta_g/2)
\end{eqnarray}
\noindent where
\begin{equation}
\zeta_g=\Delta x\sqrt{\Sigma_{{\rm r},g} \over D_g}
\end{equation}
\noindent where $\Delta x$, $\Sigma_{{\rm r},g}$ and $D_g$ are the node width (cm), the macroscopic removal cross section (cm$^{-1}$)
and the diffusion coefficient (cm) in group $g$, respectively.
\vskip 0.02cm
Other equivalence techniques are known as {\tt DF-ANM} and {\tt ERM-ANM}. These techniques are similar to {\tt DF-NEM} and
{\tt ERM-NEM} where the nodal expansion method (NEM) is replaced by an analytic solution of the $G-$group diffusion equation.
\goodbreak
The calling specifications are:
\begin{DataStructure}{Structure \dstr{BREF:}}
\dusa{GEOM} \dusa{MACRO}~\moc{:=}~\moc{BREF:}~\dusa{GEOM\_SN} $[[$~\dusa{EDIT\_SN}~$]]$ \moc{::} \dstr{BREF\_data} \\
\end{DataStructure}
\noindent where
\begin{ListeDeDescription}{mmmmmmm}
\item[\dusa{GEOM}] {\tt character*12} name of the nodal {\sc geometry} (type {\tt L\_GEOM}) object open creation mode. This geometry can be used for
performing a verification calculation over the 1D nodal geometry.
\item[\dusa{MACRO}] {\tt character*12} name of the nodal {\sc macrolib} (type {\tt L\_MACROLIB}) object open in creation mode.
\item[\dusa{GEOM\_SN}] {\tt character*12} name of the $S_n$ {\sc geometry} (type {\tt L\_GEOM}) object open in read-only mode.
\item[\dusa{EDIT\_SN}] {\tt character*12} name of one or many $S_n$ {\sc edition} (type {\tt L\_EDIT}) object, containing coarse-group and
coarse-mesh {\sc macrolib} for the edition {\sc macro-geometry} with gaps, corresponding to one or many reference $S_n$ calculations.
\item[\dusa{BREF\_data}] input data structure containing specific data (see \Sect{descBREF}).
\end{ListeDeDescription}
\clearpage
\subsubsection{Data input for module {\tt BREF:}}\label{sect:descBREF}
\begin{DataStructure}{Structure \dstr{BREF\_data}}
$[$~\moc{EDIT} \dusa{iprint}~$]$ \\
$[$~\moc{HYPE} \dusa{igmax}~$]$ \\
\moc{MIX} $[[$ \dusa{imix} $]]$ \moc{GAP} $[[$ \dusa{igap} $]]$ \\
\moc{MODE} $\{$~\moc{LEFEBVRE-LEB}~$|$~\moc{KOEBKE}~$|$~\moc{DF-NEM}~$|$~\moc{DF-ANM}~$|$~\moc{DF-RT} \dusa{ielem} \dusa{icol}
$[$~\moc{SPN} $[$ \moc{DIFF} $]$ \dusa{nlf} $]~|$ \\
~~~~\moc{ERM-NEM}~$|$~\moc{ERM-ANM}~$\}$ \\
$[~\{$~\moc{SPH}~$|$~\moc{NOSP}~$\}~]~[~\{$~\moc{ALBE}~$|$~\moc{NOAL}~$\}~]$ \\
$[$~\moc{NGET}~$[$~(\dusa{adf}($g$), $g$=1,$N_g$) $]~]$ \\
{\tt ;}
\end{DataStructure}
\noindent where
\begin{ListeDeDescription}{mmmmmmmm}
\item[\moc{EDIT}] keyword used to set \dusa{iprint}.
\item[\dusa{iprint}] index used to control the printing in module {\tt BREF:}. =0 for no print; =1 for minimum printing (default value).
\item[\moc{HYPE}] keyword used to specify the type of nodal expansion base functions with the {\tt DF-NEM} and {\tt ERM-NEM}
methods. By default, polynomial base functions are used in all energy groups.
\item[\dusa{igmax}] hyperbolic base functions are used for coarse energy groups with indices $\ge$ \dusa{igmax}.
\item[\moc{MIX}] keyword used to set the nodal mixture indices \dusa{imix}.
\item[\dusa{imix}] index of a mixture index within object \dusa{EDIT\_SN} corresponding to a node. In Fig.~\ref{fig:bref}, this data
is set as {\tt MIX 0 3} for {\tt LEFEBVRE-LEB} and {\tt KOEBKE} geometries and set as {\tt MIX 1 3} for other geometries.
\item[\moc{GAP}] keyword used to set the gap mixture indices \dusa{igap} where the surfacic fluxes are recovered.
\item[\dusa{igap}] index of a mixture index within object \dusa{EDIT\_SN} corresponding to a gap. In Fig.~\ref{fig:bref}, this data
is set as {\tt GAP 2 0} for {\tt LEFEBVRE-LEB} and {\tt KOEBKE} geometries and set as {\tt GAP 2 4} for other geometries.
\item[\moc{MODE}] keyword used to select a specific reflector equivalence model. The character*12 name of this model is chosen among the following values:
\item[{\tt LEFEBVRE-LEB}] Lefebvre-Lebigot equivalence model. Two \dusa{EDIT\_SN} objects are expected at RHS.\cite{LLB,Frohlicher}
\item[{\tt KOEBKE}] Koebke equivalence model. Two \dusa{EDIT\_SN} objects are expected at RHS.\cite{Koebke,Frohlicher}
\item[{\tt DF-NEM}] Pure discontinuity-factor model based on the nodal expansion method (NEM). Only one \dusa{EDIT\_SN} object is expected at RHS.
\item[{\tt DF-ANM}] Pure discontinuity-factor model based on the analytic nodal method (ANM). Only one \dusa{EDIT\_SN} object is expected at RHS.
\item[{\tt DF-RT}] Pure discontinuity-factor model based on the Raviart-Thomas finite element method in diffusion or $SP_n$ theory. Only one \dusa{EDIT\_SN} object is expected at RHS.
\item[{\tt ERM-NEM}] {\sl Equivalent reflector model} based on {\sl matrix discontinuity factors} and nodal expansion method (NEM).
Two or more \dusa{EDIT\_SN} objects are expected at RHS.
\item[{\tt ERM-ANM}] {\sl Equivalent reflector model} based on {\sl matrix discontinuity factors} and analytic nodal method (ANM).
Two or more \dusa{EDIT\_SN} objects are expected at RHS.
\item[\dusa{ielem}] order of the Raviart-Thomas finite element method. The values
permitted are 1 (linear polynomials), 2 (parabolic polynomials), 3 (cubic polynomials) or 4 (quartic polynomials).
\item[\dusa{icol}] type of quadrature used to integrate the mass matrices in the Raviart-Thomas finite element method. The
values permitted are 1 (analytical integration), 2 (Gauss-Lobatto quadrature) or 3 (Gauss-Legendre quadrature).
\item[{\tt SPN}] keyword to define a simplified spherical harmonics ($SP_n$) macro calculation. By default, diffusion theory is used.
\item[\moc{DIFF}] keyword to force using $1/3D^{g}$ as $\Sigma_1^{g}-\Sigma_{{\rm s}1}^{g}$ cross sections with the $SP_n$ approximation. A $SP_1$ method
will therefore behave as diffusion theory.
\item[\dusa{nlf}] order of the $SP_n$ expansion (odd number).
\item[\moc{SPH}] keyword used to include discontinuity factors within cross sections and diffusion coefficients. This option is not available
with models {\tt ERM-NEM} and {\tt ERM-ANM}. This is the default option with model {\tt DF-RT}.
\item[\moc{NOSP}] keyword used to store discontinuity factors in {\sc macrolib} \dusa{MACRO} (default option, except for model {\tt DF-RT}).
\item[\moc{ALBE}] keyword used to compute an equivalent albedo in each coarse energy group with {\tt DF-NEM}, {\tt DF-ANM}, {\tt DF-RT},
{\tt ERM-NEM} and {\tt ERM-ANM} models (default option).
\item[\moc{NOAL}] keyword used to desactivate equivalent albedo calculation.
\item[\moc{NGET}] keyword used to force the value of the fuel assembly discontinuity factor at the fuel-reflector interface, as used
by the NGET normalization. By default, this value is not modified by NGET normalization.
\item[\dusa{adf}] value of the assembly discontinuity factor (ADF) on the fuel-reflector interface in group $g\le N_g$. If keyword \moc{NGET} is set and
\dusa{adf} values are not given, the ADF values are recovered from \dusa{EDIT\_SN}.
\end{ListeDeDescription}
\eject
|