summaryrefslogtreecommitdiff
path: root/Dragon/src/USSIT0.f
blob: 6e0af2da9dc9ba9751d80fa907c6cc38694f553d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
*DECK USSIT0
      SUBROUTINE USSIT0(MAXNOR,NGRP,MASKG,IRES,IPLI0,IPTRK,IFTRAK,
     1 CDOOR,IMPX,NBMIX,NREG,NUN,NL,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IREX,
     2 SIGGAR,TITR,ICORR,NIRES,NBNRS,NOR,CONR,GOLD,IPPT1,IPPT2,STGAR,
     3 SSGAR,SWGAR,VOLMER,UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the multiband fluxes as required by the subgroup method using
* a response matrix approach (Ribon extended subgroup method):
* a) assume a single resonant isotope;
* b) use the standard solution doors of Dragon.
*
*Copyright:
* Copyright (C) 2003 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR  maximum order of the probability tables (PT).
* NGRP    number of energy group.
* MASKG   energy group mask pointing on self-shielded groups.
* IRES    index of the resonant isotope.
* IPLI0   pointer to the internal microscopic cross section library
*         builded by the self-shielding module.
* IPTRK   pointer to the tracking (L_TRACK signature).
* IFTRAK  file unit number used to store the tracks.
* CDOOR   name of the geometry/solution operator.
* IMPX    print flag (equal to zero for no print).
* NBMIX   number of mixtures in the internal library.
* NREG    number of regions.
* NUN     number of unknowns in the flux or source vector in one
*         energy group and one band.
* NL      number of Legendre orders required in the calculation
*         (NL=1 or higher).
* IPHASE  type of flux solution (=1 use a native flux solution door;
*         =2 use collision probabilities).
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* KEYFLX  pointers of fluxes in unknown vector.
* LEAKSW  leakage switch (LEAKSW=.TRUE. if neutron leakage through
*         external boundary is present).
* IREX    fuel region index assigned to each mixture. Equal to zero
*         in non-resonant mixtures or in mixtures not used.
* SIGGAR  macroscopic x-s of the non-resonant isotopes in each mixture:
*         (*,*,*,1) total; (*,*,*,2) transport correction; 
*         (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
* TITR    title.
* ICORR   mutual resonance shielding flag (=1 to suppress the model
*         in cases it is required in LIB operator).
* NIRES   exact number of correlated resonant isotopes.
* NBNRS   number of correlated fuel regions.
* NOR     exact order of the probability table.
* CONR    number density of the resonant isotopes.
* GOLD    type of self-shielding model (=1.0 physical probability
*         tables; =-999.0 Ribon extended method).
* IPPT1   pointer to LCM directory of each resonant isotope.
* IPPT2   information related to each resonant isotope:
*         IPPT2(:,1) index of a resonant region (used with infinite
*         dilution case);
*         IPPT2(:,2:4) alias name of resonant isotope.
* STGAR   averaged microscopic total xs in resonant region.
* SSGAR   averaged microscopic scattering xs in resonant region.
* SWGAR   microscopic secondary slowing-down cross sections (used
*         if GOLD=-999.).
* VOLMER  volumes of the resonant and non-resonant regions.
*
*Parameters: output
* UNGAR   averaged flux unknowns.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      USE DOORS_MOD
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
      INTEGER MAXNOR,NGRP,IRES,IFTRAK,IMPX,NBMIX,NREG,NUN,NL,
     1 IPHASE,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),ICORR,NIRES,NBNRS,
     2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
      REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),
     1 CONR(NBNRS,NIRES),GOLD(NIRES,NGRP),STGAR(NBNRS,NIRES,NGRP),
     2 SSGAR(NBNRS,NIRES,NL,NGRP),SWGAR(NBNRS,NIRES,NGRP),
     3 VOLMER(0:NBNRS),UNGAR(NUN,NIRES,NGRP)
      LOGICAL LEAKSW,MASKG(NGRP)
      CHARACTER CDOOR*12,TITR*72
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) IPSYS,KPSYS,JPLIB,KPLIB,JPLI0,IPMACR,IPSOU
      LOGICAL EMPTY,LCM,LEXAC,REBFLG
      CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12,HSMG*131
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
      REAL, ALLOCATABLE, DIMENSION(:) :: SIGTXS,SIGS0X,SIGG,AWPHI,FUN,
     1 SUN
      REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,WSLD,SIGWS,PAV,
     1 SIGX
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: XFLUX
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
      TYPE(C_PTR) SIGP_PTR
      REAL, POINTER, DIMENSION(:) :: SIGP
*----
*  STATEMENT FUNCTIONS
*----
      INM(IND,INOR,NBNRS)=(INOR-1)*NBNRS+IND
*----
*  FIND THE NUMBER OF COMPONENTS REQUIRED AND ALLOCATE THE LIST OF
*  ASSEMBLY MATRICES.
*----
      NASM=0
      DO 10 IGRP=1,NGRP
      IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
         NASM=NASM+NOR(IRES,IGRP)
      ENDIF
   10 CONTINUE
      IF(NASM.EQ.0) RETURN
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(XFLUX(NBNRS,MAXNOR,NIRES),SIGTXS(0:NBMIX),
     1 SIGS0X(0:NBMIX),SIGG(0:NBMIX),AWPHI(0:NBNRS),WEIGH(MAXNOR,NIRES),
     2 TOTPT(MAXNOR,NIRES),WSLD(MAXNOR**2,NIRES),SIGWS(MAXNOR,NIRES),
     3 PAV(0:NBNRS,0:NBNRS),SIGX(NBNRS,NIRES))
      ALLOCATE(MATRIX(NBNRS*MAXNOR,NBNRS*MAXNOR+1))
*----
*  CREATE A SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
      WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
      CALL LCMSIX(IPLI0,CBDPNM,1)
      JPLI0=LCMGID(IPLI0,'NWT0-PT')
      IPSYS=LCMLID(IPLI0,'ASSEMB-RIBON',NASM)
      CALL LCMSIX(IPLI0,' ',2)
*----
*  LOOP OVER THE ENERGY GROUPS.
*----
      ALLOCATE(NPSYS(NASM))
      IASM=0
      DO 120 IGRP=1,NGRP
      IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
         IF(IMPX.GT.1) THEN
            WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
            WRITE(6,'(36H USSIT0: PROCESS CORRELATED ISOTOPE ,A12,
     1      11H WITH INDEX,I3,9H IN GROUP,I4,22H (RESPONSE MATRIX APPR,
     2      6HOACH).)') TEXT12,IRES,IGRP
         ENDIF
         DO 20 JRES=1,NIRES
         IF(GOLD(JRES,IGRP).NE.GOLD(IRES,IGRP)) THEN
            WRITE(HSMG,'(34HUSSIT0: PTSL NOT SET FOR ISOTOPE '',3A4,
     1      10H'' IN GROUP,I4,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
            CALL XABORT(HSMG)
         ELSE IF(NOR(JRES,IGRP).GT.MAXNOR) THEN
            CALL XABORT('USSIT0: MAXNOR OVERFLOW.')
         ENDIF
   20    CONTINUE
*----
*  COLLECT THE BASE POINTS IN TOTAL CROSS SECTION.
*----
         NORI=NOR(IRES,IGRP)
         DO 40 JRES=1,NIRES
         JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
         CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
         IF(ILONG.NE.0) THEN
            KPLIB=LCMGIL(JPLIB,IGRP)
            CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
            CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
            NPART=LENG/MAXNOR
            IF(LCM) THEN
               CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
               CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
            ELSE
               ALLOCATE(SIGP(MAXNOR*NPART))
               CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
            ENDIF
            DO 30 INOR=1,NOR(JRES,IGRP)
            WEIGH(INOR,JRES)=SIGP(INOR)
            TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
   30       CONTINUE
            IF(.NOT.LCM) DEALLOCATE(SIGP)
         ELSE
            WEIGH(1,JRES)=1.0
            TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
         ENDIF
   40    CONTINUE
*----
*  SET THE MIXTURE-DEPENDENT CROSS SECTIONS.
*----
         DO 110 INOR=1,NORI
         SIGTXS(0:NBMIX)=0.0
         SIGS0X(0:NBMIX)=0.0
         DO 90 IBM=1,NBMIX
         IND=IREX(IBM)
         DO 80 JRES=0,NIRES
         IF(JRES.EQ.0) THEN
            SIGTXS(IBM)=SIGTXS(IBM)+(SIGGAR(IBM,0,IGRP,1)-
     1      SIGGAR(IBM,0,IGRP,2))
            SIGS0X(IBM)=SIGS0X(IBM)-SIGGAR(IBM,0,IGRP,2)
         ELSE IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
            SIGTXS(IBM)=SIGTXS(IBM)+SIGGAR(IBM,JRES,IGRP,1)
         ENDIF
   80    CONTINUE
         IF(IND.GT.0) THEN
            SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,IRES)*TOTPT(INOR,IRES)
         ENDIF
   90    CONTINUE
         IASM=IASM+1
         NPSYS(IASM)=IASM
         KPSYS=LCMDIL(IPSYS,IASM)
         CALL LCMPUT(KPSYS,'DRAGON-TXSC',NBMIX+1,2,SIGTXS)
         CALL LCMPUT(KPSYS,'DRAGON-S0XSC',NBMIX+1,2,SIGS0X)
  110    CONTINUE
      ELSE IF(GOLD(IRES,IGRP).EQ.-999.) THEN
         CALL LCMLEL(JPLI0,IGRP,LENG0,ITYLCM)
         IF(LENG0.NE.0) THEN
            WRITE(HSMG,'(42HUSSIT0: UNEXPECTED SELF-SHIELDING DATA FOU,
     1      11HND IN GROUP,I5,1H.)') IGRP
            CALL XABORT(HSMG)
         ENDIF
      ENDIF
  120 CONTINUE
*----
*  ASSEMBLY MATRIX OR REDUCED COLLISION PROBABILITIES CALCULATION.
*----
      NANI=1
      KNORM=1
      NALBP=0
      IMPY=MAX(0,IMPX-3)
      IF(IPHASE.EQ.1) THEN
*        USE A NATIVE DOOR.
         ISTRM=1
         NW=0
         CALL DOORAV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
     1   NBMIX,NANI,NW,MAT,VOL,KNORM,LEAKSW,TITR,NALBP,ISTRM)
      ELSE IF(IPHASE.EQ.2) THEN
*        USE A COLLISION PROBABILITY DOOR.
         IPIJK=1
         ITPIJ=1
         CALL DOORPV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
     1   NBMIX,NANI,MAT,VOL,KNORM,IPIJK,LEAKSW,ITPIJ,.FALSE.,TITR,NALBP)
      ENDIF
      DEALLOCATE(NPSYS)
*----
*  LOOP OVER THE ENERGY GROUPS.
*----
      IASM=0
      DO 300 IGRP=1,NGRP
      IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
         IF(IMPX.GT.5) WRITE(6,'(/25H USSIT0: PROCESSING GROUP,I5,
     >   6H WITH ,A,1H.)') IGRP,CDOOR
         NORI=NOR(IRES,IGRP)
*----
*  COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
*----
         ALLOCATE(NPSYS(NORI*(NBNRS+1)))
         ALLOCATE(FUN(NUN*NORI*(NBNRS+1)),SUN(NUN*NORI*(NBNRS+1)))
         FUN(:NUN*NORI*(NBNRS+1))=0.0
         SUN(:NUN*NORI*(NBNRS+1))=0.0
         DO 145 INOR=1,NORI
         DO 140 JNBN=0,NBNRS
         NPSYS((INOR-1)*(NBNRS+1)+JNBN+1)=IASM+INOR
         T1=0.0
         DO 125 I=1,NREG
         IBM=MAT(I)
         IF(IBM.EQ.0) GO TO 125
         IND=IREX(IBM)
         IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
            T1=T1+SIGGAR(IBM,0,IGRP,3)*VOL(I)
         ELSE IF(IND.EQ.JNBN) THEN
            T1=T1+VOL(I)
         ENDIF
  125    CONTINUE
         IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN
         SIGG(0:NBMIX)=0.0
         DO 130 IBM=1,NBMIX
         IND=IREX(IBM)
         IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
            SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,0,IGRP,3)
         ELSE IF(IND.EQ.JNBN) THEN
            SIGG(IBM)=SIGG(IBM)+1.0
         ENDIF
  130    CONTINUE
         CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))

         DO 135 I=1,NUN
         IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/T1
  135    CONTINUE
  140    CONTINUE
  145    CONTINUE
*----
*  SOLVE FOR THE MULTIBAND FLUX.
*----
         IDIR=0
         NABS=NORI*(NBNRS+1)
         LEXAC=.FALSE.
         IPMACR=C_NULL_PTR
         IPSOU=C_NULL_PTR
         REBFLG=.FALSE.
         CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
     1   IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
     2   IPSOU,REBFLG)
*----
*  HOMOGENIZE THE MULTIBAND FLUX.
*----
         DO 170 INOR=1,NORI
         PAV(0:NBNRS,0:NBNRS)=0.0
         DO 155 JNBN=0,NBNRS
         T1=0.0
         DO 150 I=1,NREG
         IBM=MAT(I)
         IF(IBM.EQ.0) GO TO 150
         IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)
         PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF)*VOL(I)
  150    CONTINUE
  155    CONTINUE
         DO 165 I=0,NBNRS
         DO 160 J=0,NBNRS
         IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
  160    CONTINUE
  165    CONTINUE
         KPSYS=LCMGIL(IPSYS,IASM+INOR)
         CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
  170    CONTINUE
         DEALLOCATE(SUN,FUN,NPSYS)
*----
*  COLLECT THE BASE POINTS IN TOTAL AND PARTIAL CROSS SECTION.
*----
         DO 200 JRES=1,NIRES
         JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
         CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
         IF(ILONG.NE.0) THEN
            KPLIB=LCMGIL(JPLIB,IGRP)
            CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
            CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
            NPART=LENG/MAXNOR
            IF(LCM) THEN
               CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
               CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
            ELSE
               ALLOCATE(SIGP(MAXNOR*NPART))
               CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
            ENDIF
            IF(GOLD(IRES,IGRP).EQ.-999.) THEN
               DO 180 INOR=1,NOR(JRES,IGRP)
               WEIGH(INOR,JRES)=SIGP(INOR)
               TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
  180          CONTINUE
               CALL LCMGET(KPLIB,'SIGQT-SLOW',WSLD(1,JRES))
               CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWS(1,JRES))
            ELSE
               DO 190 INOR=1,NOR(JRES,IGRP)
               WEIGH(INOR,JRES)=SIGP(INOR)
               TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
               SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
  190          CONTINUE
            ENDIF
            IF(.NOT.LCM) DEALLOCATE(SIGP)
         ELSE
            WEIGH(1,JRES)=1.0
            TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
            IF(GOLD(IRES,IGRP).EQ.-999.) THEN
               SIGWS(1,JRES)=SWGAR(IPPT2(JRES,1),JRES,IGRP)
               WSLD(1,JRES)=1.0
            ELSE
               SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
            ENDIF
         ENDIF
  200    CONTINUE
*----
*  TAKE INTO ACCOUNT CORRELATION EFFECTS BETWEEN ISOTOPES USING THE
*  MUTUAL SELF-SHIELDING MODEL.
*----
        IF((NIRES.GT.1).AND.(GOLD(IRES,IGRP).EQ.-999.).AND.
     1  (ICORR.EQ.0)) THEN
           DO 225 JRES=1,NIRES
           DO 220 IND=1,NBNRS
           SIGX(IND,JRES)=0.0
           T1=0.0
           T2=0.0
           DO 215 I=1,NREG
           IBM=MAT(I)
           IF(IBM.EQ.0) GO TO 215
           IF(IND.EQ.IREX(IBM)) THEN
              T1=T1+(SIGGAR(IBM,JRES,IGRP,1)-SIGGAR(IBM,JRES,IGRP,2))*
     1        VOL(I)
              T2=T2+VOL(I)
           ENDIF
  215      CONTINUE
           IF(T2.NE.0.0) SIGX(IND,JRES)=T1/T2
  220      CONTINUE
  225      CONTINUE
           CALL USSCOR(MAXNOR,IGRP,IPSYS,IASM,IRES,NBNRS,NIRES,
     1     NOR(1,IGRP),CONR,IPPT1,IPPT2,WEIGH,TOTPT,SIGX,VOLMER)
        ENDIF
*----
*  RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
*----
        DO 272 INOR=1,NORI
        KPSYS=LCMGIL(IPSYS,IASM+INOR)
        CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
*----
*  LOOP OVER THE PRIMARY SUBGROUPS. NORI+1 IS THE SOURCE.
*----
        DO 271 JNOR=1,NORI+1
        IF(JNOR.LE.NORI) THEN
           JNBMAX=NBNRS
        ELSE
           JNBMAX=1
        ENDIF
        DO 270 JNBN=1,JNBMAX
        AWPHI(1:NBNRS)=0.0
        DO 250 I=1,NREG
        IBM=MAT(I)
        IF(IBM.EQ.0) GO TO 250
        JND=IREX(IBM)
        QQQ=0.0
        IF(JNOR.EQ.NORI+1) THEN
           DO 230 JRES=0,NIRES
           IF(JRES.EQ.0) THEN
              QQQ=QQQ+SIGGAR(IBM,0,IGRP,3)
           ELSE IF((JRES.NE.IRES).AND.(JND.GT.0)) THEN
              QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
           ENDIF
  230      CONTINUE
        ELSE IF(JND.EQ.JNBN) THEN
           IF(GOLD(IRES,IGRP).EQ.-999.) THEN
              WWW=WSLD((JNOR-1)*NORI+INOR,IRES)/WEIGH(INOR,IRES)
           ELSE
              WWW=WEIGH(JNOR,IRES)
           ENDIF
           QQQ=QQQ-WWW*CONR(JND,IRES)*SIGWS(JNOR,IRES)
        ENDIF
        DO 240 IND=1,NBNRS
        AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*QQQ*VOL(I)/VOLMER(JND)
  240   CONTINUE
  250   CONTINUE
        DO 260 IND=1,NBNRS
        MATRIX(INM(IND,INOR,NBNRS),INM(JNBN,JNOR,NBNRS))=AWPHI(IND)
  260   CONTINUE
  270   CONTINUE
  271   CONTINUE
  272   CONTINUE
*
        DO 280 I=1,NBNRS*NORI
        MATRIX(I,I)=MATRIX(I,I)+1.0D0
  280   CONTINUE
        CALL ALSBD(NBNRS*NORI,1,MATRIX,IER,NBNRS*MAXNOR)
        IF(IER.NE.0) CALL XABORT('USSIT0: SINGULAR MATRIX.')
        XFLUX(:NBNRS,:MAXNOR,IRES)=0.0
        DO 295 IND=1,NBNRS
        DO 290 INOR=1,NORI
        I1=INM(IND,INOR,NBNRS)
        XFLUX(IND,INOR,IRES)=REAL(MATRIX(I1,NBNRS*NORI+1))
  290   CONTINUE
  295   CONTINUE
* END OF RESPONSE MATRIX APPROACH.
*
        CALL LCMPDL(JPLI0,IGRP,NBNRS*NORI,2,XFLUX(1,1,IRES))
        IASM=IASM+NORI
      ENDIF
  300 CONTINUE
*----
*  COMPUTE UNGAR, THE REGION-ORDERED FLUX.
*----
      ALLOCATE(NPSYS(NASM),FUN(NUN*NASM),SUN(NUN*NASM))
      SUN(:NUN*NASM)=0.0
      IASM=0
      DO 420 IGRP=1,NGRP
      IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
         NORI=NOR(IRES,IGRP)
*----
*  RECOVER THE PREVIOUS FLUXES.
*----
         WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
         CALL LCMSIX(IPLI0,CBDPNM,1)
         JPLI0=LCMGID(IPLI0,'NWT0-PT')
         CALL LCMLEL(JPLI0,IGRP,ILON,ITYLCM)
         IF(ILON.GT.NBNRS*MAXNOR) THEN
            WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
            WRITE(HSMG,'(34HUSSIT0: FLUX OVERFLOW FOR ISOTOPE ,A12)')
     1      TEXT12
            CALL XABORT(HSMG)
         ENDIF
         CALL LCMGDL(JPLI0,IGRP,XFLUX(1,1,IRES))
         CALL LCMSIX(IPLI0,' ',2)
*----
*  COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
*----
         DO 340 JRES=1,NIRES
         JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
         CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
         IF(ILONG.NE.0) THEN
            KPLIB=LCMGIL(JPLIB,IGRP)
            CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
            CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
            NPART=LENG/MAXNOR
            IF(LCM) THEN
               CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
               CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
            ELSE
               ALLOCATE(SIGP(MAXNOR*NPART))
               CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
            ENDIF
            IF(GOLD(IRES,IGRP).EQ.-999.) THEN
               DO 320 INOR=1,NOR(JRES,IGRP)
               WEIGH(INOR,JRES)=SIGP(INOR)
  320          CONTINUE
               CALL LCMGET(KPLIB,'SIGQT-SLOW',WSLD(1,JRES))
               CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWS(1,JRES))
            ELSE
               DO 330 INOR=1,NOR(JRES,IGRP)
               WEIGH(INOR,JRES)=SIGP(INOR)
               SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
  330          CONTINUE
            ENDIF
            IF(.NOT.LCM) DEALLOCATE(SIGP)
         ELSE
            WEIGH(1,JRES)=1.0
            IF(GOLD(IRES,IGRP).EQ.-999.) THEN
               SIGWS(1,JRES)=SWGAR(IPPT2(JRES,1),JRES,IGRP)
               WSLD(1,JRES)=1.0
            ELSE
               SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
            ENDIF
         ENDIF
  340    CONTINUE
*----
*  COMPUTE THE AVERAGED SOURCE.
*----
         DO 380 INOR=1,NORI
         NPSYS(IASM+INOR)=IASM+INOR
         KPSYS=LCMGIL(IPSYS,IASM+INOR)
         CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
         IF(ILENG.EQ.NUN) THEN
            CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((IASM+INOR-1)*NUN+1))
         ELSE
            FUN((IASM+INOR-1)*NUN+1:(IASM+INOR)*NUN)=0.0
         ENDIF
         SIGG(0)=0.0
         DO 370 IBM=1,NBMIX
         QQQ=SIGGAR(IBM,0,IGRP,3)
         IND=IREX(IBM)
         DO 350 JRES=1,NIRES
         IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
            QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
         ENDIF
  350    CONTINUE
         IF(IND.GT.0) THEN
            DO 360 JNOR=1,NORI
            IF(GOLD(IRES,IGRP).EQ.-999.) THEN
               WWW=WSLD((JNOR-1)*NORI+INOR,IRES)/WEIGH(INOR,IRES)
            ELSE
               WWW=WEIGH(JNOR,IRES)
            ENDIF
            QQQ=QQQ+WWW*CONR(IND,IRES)*SIGWS(JNOR,IRES)*
     1      XFLUX(IND,JNOR,IRES)
  360       CONTINUE
         ENDIF
         SIGG(IBM)=QQQ*WEIGH(INOR,IRES)
  370    CONTINUE
         IOF=(IASM+INOR-1)*NUN
         CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
  380    CONTINUE
*
         IF(IMPX.GT.0) THEN
            WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
            WRITE(6,'(15H USSIT0: GROUP=,I5,24H. SUBGROUP CALCULATION B,
     1      37HASED ON RESPONSE MATRICES.  ISOTOPE='',A12,2H''.)') IGRP,
     2      TEXT12
         ENDIF
         IF(IMPX.GT.2) THEN
            DO 400 IND=1,NBNRS
            T1=0.0
            DO 390 INOR=1,NOR(IRES,IGRP)
            T1=T1+WEIGH(INOR,IRES)*XFLUX(IND,INOR,IRES)
  390       CONTINUE
            WRITE(6,'(31H USSIT0: AVERAGED FLUX IN GROUP,I4,8H AND RES,
     1      12HONANT REGION,I4,21H FOR RESONANT ISOTOPE,I4,2H =,F9.5)')
     2      IGRP,IND,IRES,T1
  400       CONTINUE
         ENDIF
*
         IASM=IASM+NORI
      ENDIF
  420 CONTINUE
*----
*  SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
*----
      IDIR=0
      LEXAC=.FALSE.
      IF(IMPX.GT.5) WRITE(6,'(/33H USSIT0: PROCESSING MULTIBAND FLU,
     1 14HX (IL=1) WITH ,A,1H.)') CDOOR
      IPMACR=C_NULL_PTR
      IPSOU=C_NULL_PTR
      REBFLG=.FALSE.
      CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NASM,NBMIX,
     1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
     2 IPSOU,REBFLG)
*----
*  INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS.
*----
      IASM=0
      DO 480 IGRP=1,NGRP
      IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
        UNGAR(:NUN,IRES,IGRP)=0.0
        NORI=NOR(IRES,IGRP)
        DO 475 INOR=1,NORI
        KPSYS=LCMGIL(IPSYS,IASM+INOR)
        IOF=(IASM+INOR-1)*NUN
        CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
*----
*  NORMALIZE THE MULTIBAND FLUX. THIS NORMALIZATION IS ONLY REQUIRED IF
*  THE MUTUAL SELF-SHIELDING MODEL IS USED.
*----
        IF((NIRES.GT.1).AND.(GOLD(IRES,IGRP).EQ.-999.).AND.(ICORR.EQ.0))
     1  THEN
           IOFF=(IASM+INOR-1)*NUN
           AWPHI(0:NBNRS)=0.0
           DO 430 I=1,NREG
           IBM=MAT(I)
           IF(IBM.GT.0) THEN
              IND=IREX(IBM)
              AWPHI(IND)=AWPHI(IND)+FUN(IOFF+KEYFLX(I))*VOL(I)/
     1        VOLMER(IND)
           ENDIF
  430      CONTINUE
           CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
           DO 450 IND=0,NBNRS
           TT=0.0
           DO 440 J=1,NREG
           IBM=MAT(J)
           IF(IBM.GT.0) THEN
              JND=IREX(IBM)
              IOFS=(IASM+INOR-1)*NUN+KEYFLX(J)
              TT=TT+PAV(IND,JND)*SUN(IOFS)*VOL(J)/VOLMER(JND)
           ENDIF
  440      CONTINUE
           AWPHI(IND)=TT/AWPHI(IND)
  450      CONTINUE
           DO 460 I=1,NREG
           IBM=MAT(I)
           IF(IBM.GT.0) FUN(IOFF+KEYFLX(I))=FUN(IOFF+KEYFLX(I))*
     1     AWPHI(IREX(IBM))
  460      CONTINUE
        ENDIF
*
        DO 470 I=1,NUN
        IOF=(IASM+INOR-1)*NUN+I
        UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF)
  470   CONTINUE
  475   CONTINUE
        IASM=IASM+NORI
      ENDIF
  480 CONTINUE
      DEALLOCATE(SUN,FUN,NPSYS)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(MATRIX)
      DEALLOCATE(SIGX,PAV,SIGWS,WSLD,TOTPT,WEIGH,AWPHI,SIGG,SIGS0X,
     1 SIGTXS,XFLUX)
      RETURN
      END