1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
*DECK SYBJJ2
SUBROUTINE SYBJJ2 (IPAS,NMCEL,NMERGE,NGEN,IJAT,NPIJ,NPIS,EPSJ,
1 NUNKNO,FUNKNO,SUNKNO,IMPX,NCOUR,NMC,IFR,ALB,INUM,MIX,DVX,IGEN,
2 PIJW,PISW,PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the neutron flux and interface currents in a 2-D Cartesian
* or hexagonal assembly using the current iteration method with
* Roth X 4, DP0 or DP1 approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPAS total number of regions.
* NMCEL total number of cells in the domain.
* NMERGE total number of merged cells for which specific values
* of the neutron flux and reactions rates are required.
* Many cells with different position in the domain can
* be merged before the neutron flux calculation if they
* own the same generating cell (NMERGE.le.NMCEL).
* NGEN total number of generating cells. A generating cell is
* defined by its material and dimensions, irrespective of
* its position in the domain (NGEN.le.NMERGE).
* IJAT total number of distinct out-currents.
* NPIJ size of cellwise scattering-reduced collision probability
* matrices.
* NPIS size of cellwise scattering-reduced escape probability
* matrices.
* EPSJ stopping criterion for flux-current iterations.
* NUNKNO total number of unknowns in vectors SUNKNO and FUNKNO.
* SUNKNO input source vector.
* IMPX print flag (equal to 0 for no print).
* NCOUR number of incoming currents (=4 Cartesian lattice;
* =6 hexagonal lattice).
* NMC offset of the first volume in each generating cell.
* IFR index-number of in-currents.
* ALB transmission/albedo associated with each in-current.
* INUM index-number of the merged cell associated to each cell.
* MIX index-number of out-currents.
* DVX weight associated with each out-current.
* Note: IFR, ALB, MIX and DVX contains information to rebuild
* the geometrical 'A' matrix.
* IGEN index-number of the generating cell associated with each
* merged cell.
* PIJW cellwise scattering-reduced collision probability matrices.
* PISW cellwise scattering-reduced escape probability matrices.
* PSJW cellwise scattering-reduced collision probability matrices
* for incoming neutrons.
* PSSW cellwise scattering-reduced transmission probability
* matrices.
*
*Parameters: input/output
* FUNKNO unknown vector.
*
*-----------------------------------------------------------------------
*
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IPAS,NMCEL,NMERGE,NGEN,IJAT,NPIJ,NPIS,NUNKNO,IMPX,NCOUR,
1 NMC(NGEN+1),IFR(NCOUR*NMCEL),INUM(NMCEL),MIX(NCOUR*NMERGE),
2 IGEN(NMERGE)
REAL EPSJ,FUNKNO(NUNKNO),SUNKNO(NUNKNO),ALB(NCOUR*NMCEL),
1 DVX(NCOUR*NMERGE),PIJW(NPIJ),PISW(NCOUR*NPIS),PSJW(NCOUR*NPIS),
2 PSSW(NGEN*NCOUR*NCOUR)
*----
* LOCAL VARIABLES
*----
REAL PIJ,PIS
LOGICAL LOGTES
PARAMETER (MAXIT=400,LACCFC=2,ICL1=3,ICL2=3)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, DIMENSION(:), POINTER :: INDPIJ,INDNMC
DOUBLE PRECISION, DIMENSION(:), POINTER :: CIT0
DOUBLE PRECISION, DIMENSION(:,:), POINTER :: CITR,AITR
DOUBLE PRECISION, DIMENSION(:), POINTER :: WCURR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(INDPIJ(NGEN),INDNMC(NMERGE))
ALLOCATE(CITR(3,IJAT),CIT0(IJAT),AITR(2,IJAT))
ALLOCATE(WCURR(IJAT))
*
IPIJ=0
DO 10 JKG=1,NGEN
J2=NMC(JKG+1)-NMC(JKG)
INDPIJ(JKG)=IPIJ
IPIJ=IPIJ+J2*J2
10 CONTINUE
KNMC=0
DO 20 JKK=1,NMERGE
JKG=IGEN(JKK)
J2=NMC(JKG+1)-NMC(JKG)
INDNMC(JKK)=KNMC
KNMC=KNMC+J2
20 CONTINUE
*
DO 30 I=1,IJAT
WCURR(I)=1.0D0
CIT0(I)=0.0D0
CITR(1,I)=FUNKNO(IPAS+I)
30 CONTINUE
*----
* COMPUTE PSJW * Q(*) CONTRIBUTION
*----
DO 42 IKK=1,NMERGE
IKG=IGEN(IKK)
I1P=NMC(IKG)
I2=NMC(IKG+1)-I1P
IT=NCOUR*(IKK-1)
KNMC=INDNMC(IKK)
DO 41 I=1,I2
DO 40 IC=1,NCOUR
JCC=MIX(IT+IC)
PBJ=PSJW(I1P*NCOUR+(I-1)*NCOUR+IC)
CIT0(JCC)=CIT0(JCC)+PBJ*DVX(IT+IC)*SUNKNO(KNMC+I)
40 CONTINUE
41 CONTINUE
42 CONTINUE
*----
* COMPUTE NORMALIZATION VECTOR WCURR
*----
DO 52 ICEL=1,NMCEL
IKK=INUM(ICEL)
IT=NCOUR*(IKK-1)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IPSS=(IKG-1)*NCOUR*NCOUR
DO 51 JC=1,NCOUR
J1=IFR(IS+JC)
DO 50 IC=1,NCOUR
PSS=PSSW(IPSS+(JC-1)*NCOUR+IC)
WCURR(J1)=WCURR(J1)-PSS*ALB(IS+JC)*DVX(IT+IC)
50 CONTINUE
51 CONTINUE
52 CONTINUE
*
ISTART=1
TEST=0.0D0
ITER=0
70 ITER=ITER+1
IF(ITER.GT.MAXIT) THEN
WRITE(6,'(/47H SYBJJ2: *** WARNING *** MAXIMUM NUMBER OF ITER,
1 15HATIONS REACHED.)')
GO TO 190
ENDIF
IT3=MOD(ITER,3)+1
IT2=MOD(ITER-1,3)+1
IT1=MOD(ITER-2,3)+1
DO 80 I=1,IJAT
CITR(IT3,I)=CIT0(I)
80 CONTINUE
*----
* COMPUTE PSSW * J(-) CONTRIBUTION
*----
DO 92 ICEL=1,NMCEL
IKK=INUM(ICEL)
IT=NCOUR*(IKK-1)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IPSS=(IKG-1)*NCOUR*NCOUR
DO 91 JC=1,NCOUR
J1=IFR(IS+JC)
DO 90 IC=1,NCOUR
J2=MIX(IT+IC)
PSS=PSSW(IPSS+(JC-1)*NCOUR+IC)
CITR(IT3,J2)=CITR(IT3,J2)+PSS*ALB(IS+JC)*DVX(IT+IC)*CITR(IT2,J1)
90 CONTINUE
91 CONTINUE
92 CONTINUE
*----
* NORMALIZATION
*----
S1=0.0D0
S2=0.0D0
DO 100 I=1,IJAT
S1=S1+WCURR(I)*CITR(IT3,I)
S2=S2+CIT0(I)
100 CONTINUE
ZNORM=S2/S1
IF(ZNORM.LT.0.0D0) ZNORM=1.0D0
DO 110 I=1,IJAT
CITR(IT3,I)=CITR(IT3,I)*ZNORM
110 CONTINUE
*----
* ONE/TWO PARAMETER ACCELERATION
*----
ALP=1.0D0
BET=0.0D0
LOGTES=(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1)
IF(LOGTES) THEN
DO 120 I=1,IJAT
AITR(1,I)=CITR(IT3,I)-CITR(IT2,I)
AITR(2,I)=CITR(IT2,I)-CITR(IT1,I)
120 CONTINUE
DO 132 ICEL=1,NMCEL
IKK=INUM(ICEL)
IT=NCOUR*(IKK-1)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IPSS=(IKG-1)*NCOUR*NCOUR
DO 131 JC=1,NCOUR
J1=IFR(IS+JC)
DO 130 IC=1,NCOUR
J2=MIX(IT+IC)
PSS=PSSW(IPSS+(JC-1)*NCOUR+IC)*ALB(IS+JC)*DVX(IT+IC)
AITR(1,J2)=AITR(1,J2)-PSS*(CITR(IT3,J1)-CITR(IT2,J1))
AITR(2,J2)=AITR(2,J2)-PSS*(CITR(IT2,J1)-CITR(IT1,J1))
130 CONTINUE
131 CONTINUE
132 CONTINUE
IF((LACCFC.EQ.1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1)) THEN
S1=0.0D0
S2=0.0D0
DO 140 I=1,IJAT
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
140 CONTINUE
IF(S2.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=S1/S2
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
ENDIF
ENDIF
DO 150 I=1,IJAT
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))
150 CONTINUE
ELSE IF(LACCFC.EQ.2) THEN
S1=0.0D0
S2=0.0D0
S3=0.0D0
S4=0.0D0
S5=0.0D0
DO 160 I=1,IJAT
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
S3=S3+(CITR(IT3,I)-CITR(IT2,I))*AITR(2,I)
S4=S4+AITR(1,I)*AITR(2,I)
S5=S5+AITR(2,I)*AITR(2,I)
160 CONTINUE
DET=S2*S5-S4*S4
IF(DET.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=(S5*S1-S4*S3)/DET
BET=(S2*S3-S4*S1)/DET
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
BET=0.0D0
ENDIF
ENDIF
DO 170 I=1,IJAT
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))+
1 BET*(CITR(IT2,I)-CITR(IT1,I))
170 CONTINUE
ENDIF
ENDIF
*----
* CHECK THE CONVERGENCE ERROR
*----
ERR1=0.0D0
ERR2=0.0D0
DO 180 I=1,IJAT
ERR1=MAX(ERR1,ABS(CITR(IT3,I)-CITR(IT2,I)))
ERR2=MAX(ERR2,ABS(CITR(IT3,I)))
180 CONTINUE
IF(IMPX.GT.3) WRITE(6,'(30H SYBJJ2: CURRENT ITERATION NB.,I4,
1 7H ERROR=,1P,E10.3,5H OVER,E10.3,15H NORMALIZATION=,E10.3,
2 14H ACCELERATION=,2E11.3,1H.)') ITER,ERR1,ERR2,ZNORM,ALP,
3 BET/ALP
IF(ITER.EQ.1) TEST=ERR1/ERR2
IF((ITER.GT.20).AND.(ERR1/ERR2.GT.TEST)) THEN
WRITE(6,'(/45H SYBJJ2: *** WARNING *** CONVERGENCE DIFFICUL,
1 5HTIES.)')
GO TO 190
ENDIF
IF(LOGTES.OR.(ERR1.GT.EPSJ*ERR2)) GO TO 70
IF(IMPX.GT.2) WRITE(6,'(37H SYBJJ2: CURRENT CONVERGENCE AT ITERA,
1 8HTION NB.,I4,7H ERROR=,1P,E10.3,5H OVER,E10.3,1H.)') ITER,ERR1,
2 ERR2
*
190 DO 200 I=1,IPAS
FUNKNO(I)=0.0
200 CONTINUE
DO 210 I=1,IJAT
FUNKNO(IPAS+I)=REAL(CITR(IT3,I))
210 CONTINUE
*----
* COMPUTE PISW * J(-) CONTRIBUTION
*----
DO 240 ICEL=1,NMCEL
IKK=INUM(ICEL)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
I1P=NMC(IKG)
I2=NMC(IKG+1)-I1P
KNMC=INDNMC(IKK)
DO 230 J=1,I2
DO 220 JC=1,NCOUR
J1=IFR(IS+JC)
PIS=PISW(I1P*NCOUR+(JC-1)*I2+J)
FUNKNO(KNMC+J)=FUNKNO(KNMC+J)+PIS*ALB(IS+JC)*FUNKNO(IPAS+J1)
220 CONTINUE
230 CONTINUE
240 CONTINUE
*----
* COMPUTE PIJW * Q(*) CONTRIBUTION
*----
DO 270 IKK=1,NMERGE
IKG=IGEN(IKK)
I2=NMC(IKG+1)-NMC(IKG)
KNMC=INDNMC(IKK)
DO 260 I=1,I2
DO 250 J=1,I2
PIJ=PIJW(INDPIJ(IKG)+(I-1)*I2+J)
FUNKNO(KNMC+J)=FUNKNO(KNMC+J)+PIJ*SUNKNO(KNMC+I)
250 CONTINUE
260 CONTINUE
270 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(WCURR)
DEALLOCATE(AITR,CIT0,CITR)
DEALLOCATE(INDNMC,INDPIJ)
RETURN
END
|