summaryrefslogtreecommitdiff
path: root/Dragon/src/SNQU02.f
blob: dcc4665a5c918a844b4a28f1a0ccf435f56360f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
*DECK SNQU02
      SUBROUTINE SNQU02(NLF,JOP,U,W,TPQ,UPQ,VPQ,WPQ)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Set the level-symmetric (type 2) quadratures.
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NLF     order of the SN approximation (even number).
*
*Parameters: output
* JOP     number of base points per axial level in one octant.
* U       base points in $\\xi$ of the axial quadrature. Used with
*         zero-weight points.
* W       weights for the axial quadrature in $\\xi$.
* TPQ     base points in $\\xi$ of the 2D SN quadrature.
* UPQ     base points in $\\mu$ of the 2D SN quadrature.
* VPQ     base points in $\\eta$ of the 2D SN quadrature.
* WPQ     weights of the 2D SN quadrature.
*
*-----------------------------------------------------------------------
*
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NLF,JOP(NLF/2)
      REAL U(NLF/2),W(NLF/2),TPQ(NLF*(NLF/2+1)/4),UPQ(NLF*(NLF/2+1)/4),
     1 VPQ(NLF*(NLF/2+1)/4),WPQ(NLF*(NLF/2+1)/4)
*----
*  LOCAL VARIABLES
*----
      PARAMETER(PI=3.141592654,MAXNLF=24,MAXEQ=64,MAXNBA=78,MAXW=16)
      INTEGER INWEI(MAXNBA)
      DOUBLE PRECISION WSUM2,WEI(MAXW),ZMAT(MAXEQ,MAXW+1),UD(MAXW)
*----
*  SET THE UNIQUE QUADRATURE VALUES.
*----
      IF(NLF.GT.MAXNLF) CALL XABORT('SNQU02: MAXNLF OVERFLOW.')
      M2=NLF/2
      NPQ=M2*(M2+1)/2
      ZMU1=1.0D0/(3.0D0*DBLE(NLF-1))
      NW=1+(NLF*(NLF+8)-1)/48
      IF(NW.GT.MAXW) CALL XABORT('SNQU02: MAXW OVERFLOW.')
      IF(NLF.EQ.2) THEN
         ZMU1=0.33333333
      ELSE IF(NLF.EQ.4) THEN
         ZMU1=0.12251480
      ELSE IF(NLF.EQ.6) THEN
         ZMU1=0.07109447
      ELSE IF(NLF.EQ.8) THEN
         ZMU1=0.04761903
      ELSE IF(NLF.EQ.10) THEN
         ZMU1=0.03584310
      ELSE IF(NLF.EQ.12) THEN
         ZMU1=0.02796615
      ELSE IF(NLF.EQ.14) THEN
         ZMU1=0.02310250
      ELSE IF(NLF.EQ.16) THEN
         ZMU1=0.01931398
      ELSE IF(NLF.EQ.18) THEN
         ZMU1=0.01692067
      ELSE IF(NLF.EQ.20) THEN
         ZMU1=0.01455253
      ELSE
         CALL XABORT('SNQU02: ORDER NOT AVAILABLE.')
      ENDIF
      U(1)=REAL(SQRT(ZMU1))
      DO I=2,M2
         ZMU2=ZMU1+2.0D0*DBLE(I-1)*(1.0D0-3.0D0*ZMU1)/DBLE(NLF-2)
         U(I)=REAL(SQRT(ZMU2))
      ENDDO
*----
*  COMPUTE THE POSITION OF WEIGHTS.
*----
      IPR=0
      INMAX=0
      DO IP=1,M2
         JOP(IP)=M2-IP+1
         DO IQ=1,JOP(IP)
            IPR=IPR+1
            IF(IPR.GT.MAXNBA) CALL XABORT('SNQU02: MAXNBA OVERFLOW.')
            TPQ(IPR)=U(IP)
            UPQ(IPR)=U(M2+2-IP-IQ)
            VPQ(IPR)=U(IQ)
            IS=MIN(IP,IQ,M2+2-IP-IQ)
            NW0=0
            DO II=1,IS-1
               NW0=NW0+(M2-3*(II-1)+1)/2
            ENDDO
            KK=IP-IS+1
            LL=IQ-IS+1
            IF(KK.EQ.1)THEN
               INWEI(IPR)=NW0+MIN(LL,M2-3*(IS-1)+1-LL)
            ELSEIF(LL.EQ.1)THEN
               INWEI(IPR)=NW0+MIN(KK,M2-3*(IS-1)+1-KK)
            ELSE
               INWEI(IPR)=NW0+MIN(KK,LL)
            ENDIF
            INMAX=MAX(INMAX,INWEI(IPR))
         ENDDO
      ENDDO
      IF(INMAX.NE.NW) CALL XABORT('SNQU02: INVALID VALUE OF NW.')
      IF(IPR.NE.NPQ) CALL XABORT('SNQU02: BAD VALUE ON NPQ.')
*----
*  SET THE RECTANGULAR SYSTEM AND SOLVE IT USING THE QR METHOD.
*----
      NEQ=0
      DO IPL=0,NLF,2
        DO IPK=IPL,NLF-IPL,2
          IF(MOD(IPL+IPK,2).EQ.1) CYCLE
          NEQ=NEQ+1
          IF(NEQ.GT.MAXEQ) CALL XABORT('SNQU02: MAXEQ OVERFLOW.')
          DO IW=1,NW
             ZMAT(NEQ,IW)=0.0D0
          ENDDO
          DO IPQ=1,NPQ
             ZMU=TPQ(IPQ)
             ZETA=UPQ(IPQ)
             IW=INWEI(IPQ)
             ZMAT(NEQ,IW)=ZMAT(NEQ,IW)+(ZMU**IPK)*(ZETA**IPL)
          ENDDO
          REF=1.0D0/DBLE(IPK+IPL+1)
          DO I=1,IPL-1,2
             REF=REF*DBLE(I)/DBLE(IPK+I)
          ENDDO
          ZMAT(NEQ,NW+1)=REF
        ENDDO
      ENDDO
      CALL ALST2F(MAXEQ,NEQ,NW,ZMAT,UD)
      CALL ALST2S(MAXEQ,NEQ,NW,ZMAT,UD,ZMAT(1,NW+1),WEI)
*----
*  SET THE LEVEL-SYMMETRIC QUADRATURES.
*----
      IPQ=0
      WSUM=0.0
      DO IP=1,M2
         WSUM2=0.0D0
         DO IQ=1,JOP(IP)
            IPQ=IPQ+1
            WPQ(IPQ)=REAL(WEI(INWEI(IPQ))*PI/2.0)
            WSUM2=WSUM2+WEI(INWEI(IPQ))
         ENDDO
         W(IP)=REAL(WSUM2)
         WSUM=WSUM+REAL(WSUM2*PI/2.0)
      ENDDO
      RETURN
      END