1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
*DECK MCGMRE
SUBROUTINE MCGMRE(SUBFFI,SUBFFA,SUBLDC,SUBSCH,CYCLIC,KPSYS,
1 IPRINT,IPTRK,IFTRAK,IPMACR,NDIM,KV,NUN,NLONG,PHIOUT,
2 NZON,MATALB,M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,SOUR,IAAC,
3 ISCR,LC,LFORW,PACA,ITST,MAXI,QFR,PHIIN,CAZ0,CAZ1,CAZ2,
4 CPO,ZMU,WZMU,VOL,EPS,ERRTOL,REPSI,NSTART,SIGAL,LPS,
5 NGROUP,NGEFF,NGIND,NCONV,LNCONV,NLIN,NFUNL,KEYFLX,
6 KEYCUR,STIS,NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,
7 FACSYM,IDIR,NBATCH)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve the linear system obtained by the characteristics formalism
* with GMRES iterative approach.
*
*Copyright:
* Copyright (C) 2015 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier and A. Hebert
*
*Parameters:
* SUBFFI flux integration subroutine with isotropic source.
* SUBFFA flux integration subroutine with anisotropic source.
* SUBLDC flux integration subroutine with linear-discontinuous source.
* SUBSCH track coefficients calculation subroutine.
* CYCLIC cyclic tracking flag.
* KPSYS pointer array for each group properties.
* IPRINT print parameter (equal to zero for no print).
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK tracking file unit number.
* IPMACR pointer to the macrolib LCM object.
* NDIM number of dimensions for the geometry.
* KV total number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* NUN total number of unknowns in vectors QFR and PHIIN.
* NLONG number of spatial unknowns.
* PHIOUT output flux vector.
* NZON mixture-albedo index array in MCCG format.
* MATALB albedo-mixture index array in MOCC format.
* M number of material mixtures.
* NANI scattering anisotropy (=1 for isotropic scattering).
* NMU order of the polar quadrature set.
* NMAX maximum number of elements in a track.
* NANGL number of tracking angles in the plane.
* NREG number of regions (volumes).
* NSOUT number of outer surfaces.
* SOUR undefined.
* IAAC no acceleration / CDD acceleration of inner iterations (0/1).
* ISCR no acceleration / SCR acceleration of inner iterations (0/1).
* LC dimension of profiled matrices MCU and CQ.
* LFORW flag set to .false. to transpose the coefficient matrix.
* PACA type of preconditioner to solve the ACA corrective system.
* ITST output: number of inner iterations.
* MAXI maximum number of inner iterations allowed.
* QFR input source vector.
* PHIIN input flux vector.
* CAZ0 cosines of the tracking polar angles in 3D.
* CAZ1 first cosines of the different tracking azimuthal angles.
* CAZ2 second cosines of the different tracking azimuthal angles.
* CPO cosines of the different tracking polar angles in 2D.
* ZMU polar quadrature set.
* WZMU polar quadrature set.
* VOL volumes.
* EPS precision reached after min(MAXI,ITST) iterations.
* ERRTOL tolerance for stopping criterion. process is stopped
* as soon as ||Phi(n+1)-Phi(n)||/||Phi(n)|| <= EPS
* with ||.|| the euclidean norm.
* REPSI array containing precision of each iteration.
* NSTART undefined.
* SIGAL total cross-section and albedo array.
* LPS used in scr acceleration.
* NGROUP number of groups.
* NGEFF number of groups to process.
* NGIND index of the groups to process.
* NCONV array of convergence flag for each group.
* LNCONV number of unconverged groups.
* NLIN number of polynomial components in flux spatial expansion.
* NFUNL number of moments of the flux (in 2D: NFUNL=NANI*(NANI+1)/2).
* KEYFLX position of flux elements in PHIOUT vector.
* KEYCUR position of current elements in PHIOUT vector.
* STIS Source term isolation option for flux integration.
* NPJJM number of pjj modes to store for STIS option.
* REBFLG ACA or SCR rebalancing flag.
* LPRISM 3D prismatic extended tracking flag.
* N2REG number of regions in the 2D tracking if LPRISM.
* N2SOU number of external surfaces in the 2D tracking if LPRISM.
* NZP number of z-plans if LPRISM.
* DELU input track spacing for 3D track reconstruction if LPRISM.
* FACSYM tracking symmetry factor for maximum track length if LPRISM.
* IDIR direction of fundamental current for TIBERE with MoC
* (=0,1,2,3).
* NBATCH number of tracks processed in each OpenMP core (default: =1).
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
*----
* Subroutine arguments
*----
TYPE(C_PTR) KPSYS(NGEFF),IPTRK,IPMACR
INTEGER NGEFF,IPRINT,IFTRAK,NDIM,KV,NUN,NLONG,NGROUP,NZON(NLONG),
1 M,NANI,NMU,NMAX,IAAC,LC,PACA,ITST(NGEFF),NSTART,MAXI,NANGL,NREG,
2 NSOUT,ISCR,LPS,NGIND(NGEFF),LNCONV,NLIN,NFUNL,KEYFLX(NREG,NLIN,
3 NFUNL),KEYCUR(NLONG-NREG),STIS,NPJJM,MATALB(-NSOUT:NREG),N2REG,
4 N2SOU,NZP,IDIR,NBATCH
REAL QFR(NUN,NGEFF),PHIIN(NUN,NGEFF),CPO(NMU),ZMU(NMU),
1 WZMU(NMU),VOL(NLONG),EPS(NGEFF),ERRTOL,REPSI(MAXI,NGEFF),
2 SIGAL(-6:M,NGEFF),DELU,FACSYM
DOUBLE PRECISION PHIOUT(NUN,NGEFF),CAZ0(NANGL),CAZ1(NANGL),
1 CAZ2(NANGL),SOUR(NUN,NGEFF)
LOGICAL LFORW,CYCLIC,NCONV(NGEFF),REBFLG,LPRISM
EXTERNAL SUBFFI,SUBFFA,SUBLDC,SUBSCH
*---
* Local variables
*---
REAL EPSINTO,FAC
LOGICAL RHSFLG
PARAMETER (FAC=100.0,MAXINT=200)
*---
* Allocatable arrays
*---
INTEGER, ALLOCATABLE, DIMENSION(:) :: KMAX
REAL, ALLOCATABLE, DIMENSION(:,:) :: RHS, GAR
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: DENOM, RHO
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: R, G, C, S, FLOUT
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: V, H
*---
* Scratch storage allocation
*---
ALLOCATE(DENOM(NGEFF),RHO(NGEFF),KMAX(NGEFF),FLOUT(NUN,NGEFF))
ALLOCATE(RHS(NUN,NGEFF),GAR(NUN,NGEFF),V(NUN,NGEFF,NSTART+1),
1 G(NSTART+1,NGEFF),H(NSTART+1,NSTART,NGEFF),C(NSTART+1,NGEFF),
2 S(NSTART+1,NGEFF),R(NUN,NGEFF))
*
IF(MAXI.LT.3) CALL XABORT('MCGMRE: MAXI MUST BE >= 3.')
RHSFLG=.TRUE.
EPSINTO=ERRTOL/FAC
MAXIT=MAXI-1
NCONV(:)=.FALSE.
RHO(:)=0.0D0
LNCONV=0
DO II=1,NGEFF
DENOM(II)=SQRT(DOT_PRODUCT(QFR(:,II),QFR(:,II)))
RHO(II)=1.0D20
NCONV(II)=(DENOM(II) /= 0.0D0)
IF(NCONV(II)) LNCONV=LNCONV+1
ITST(II)=0
EPS(II)=0.0
ENDDO
*---
* Global GMRES(M) iteration
*---
ITER=0
DO WHILE((LNCONV /= 0) .AND. (ITER < MAXIT))
ITER=ITER+1
CALL MCGFL1(SUBFFI,SUBFFA,SUBLDC,SUBSCH,CYCLIC,KPSYS,IPRINT,
1 IPTRK,IFTRAK,IPMACR,NDIM,KV,NUN,NLONG,PHIOUT(1,1),NZON,
2 MATALB,M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,NGROUP,NGEFF,NGIND,
3 SOUR,IAAC,ISCR,LC,LFORW,PACA,EPSINTO,MAXINT,NLIN,NFUNL,
4 KEYFLX,KEYCUR,QFR,PHIIN(1,1),CAZ0,CAZ1,CAZ2,CPO,ZMU,WZMU,
5 VOL,SIGAL,LPS,NCONV,.FALSE.,STIS,NPJJM,REBFLG,LPRISM,N2REG,
6 N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
ERROR=0.0D0
DO II=1,NGEFF
REPSI(ITER,II)=0.0
IF(.NOT.NCONV(II)) CYCLE
R(:,II)=PHIOUT(:,II)-PHIIN(:,II)
RHO(II)=SQRT(DOT_PRODUCT(R(:,II),R(:,II)))
REPSI(ITER,II)=REAL(RHO(II)/DENOM(II))
IF(IPRINT.GT.4) WRITE(6,200) ITER,II,REPSI(ITER,II)
EPS(II)=REPSI(ITER,II)
ITST(II)=ITER
ERROR=MAX(ERROR,RHO(II)/DENOM(II))
IF(RHO(II) < ERRTOL*DENOM(II)) THEN
NCONV(II)=.FALSE.
LNCONV=LNCONV-1
ENDIF
ENDDO
*
* Test do termination on entry
IF(LNCONV == 0) EXIT
*
H(:,:,:)=0.0D0
V(:,:,:)=0.0D0
C(:,:)=0.0D0
S(:,:)=0.0D0
G(:,:)=0.0D0
KMAX(:)=0
DO II=1,NGEFF
IF(.NOT.NCONV(II)) CYCLE
G(1,II)=RHO(II)
V(:,II,1)=R(:,II)/RHO(II)
ENDDO
*---
* Evaluate RHS of the linear system
*---
IF(RHSFLG) THEN
IF(IPRINT > 3) WRITE(6,100) IAAC,ISCR
RHS(:,:)=0.0
CALL MCGFL1(SUBFFI,SUBFFA,SUBLDC,SUBSCH,CYCLIC,KPSYS,IPRINT,
1 IPTRK,IFTRAK,IPMACR,NDIM,KV,NUN,NLONG,FLOUT(1,1),NZON,
2 MATALB,M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,NGROUP,NGEFF,
3 NGIND,SOUR,IAAC,ISCR,LC,LFORW,PACA,EPSINTO,MAXINT,NLIN,
4 NFUNL,KEYFLX,KEYCUR,QFR,RHS(1,1),CAZ0,CAZ1,CAZ2,CPO,ZMU,
5 WZMU,VOL,SIGAL,LPS,NCONV,.FALSE.,STIS,NPJJM,REBFLG,
6 LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
DO II=1,NGEFF
IF(NCONV(II)) RHS(:,II)=REAL(FLOUT(:,II))
ENDDO
RHSFLG=.FALSE.
ENDIF
*---
* GMRES(1) iteration
*---
K=0
DO WHILE((LNCONV /= 0) .AND. (K < NSTART) .AND. (ITER < MAXIT))
K=K+1
ITER=ITER+1
GAR(:,:)=REAL(V(:,:,K))
CALL MCGFL1(SUBFFI,SUBFFA,SUBLDC,SUBSCH,CYCLIC,KPSYS,IPRINT,
1 IPTRK,IFTRAK,IPMACR,NDIM,KV,NUN,NLONG,FLOUT(1,1),NZON,
2 MATALB,M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,NGROUP,NGEFF,
3 NGIND,SOUR,IAAC,ISCR,LC,LFORW,PACA,EPSINTO,MAXINT,NLIN,
4 NFUNL,KEYFLX,KEYCUR,QFR,GAR(1,1),CAZ0,CAZ1,CAZ2,CPO,ZMU,
5 WZMU,VOL,SIGAL,LPS,NCONV,.FALSE.,STIS,NPJJM,REBFLG,
6 LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
V(:,:,K+1)=V(:,:,K)-FLOUT(:,:)+RHS(:,:)
ERROR=0.0D0
DO II=1,NGEFF
REPSI(ITER,II)=0.0
IF(.NOT.NCONV(II)) CYCLE
KMAX(II)=K
*
* Modified Gram-Schmidt
DO J=1,K
H(J,K,II)=DOT_PRODUCT(V(:,II,J),V(:,II,K+1))
V(:,II,K+1)=V(:,II,K+1)-H(J,K,II)*V(:,II,J)
ENDDO
H(K+1,K,II)=SQRT(DOT_PRODUCT(V(:,II,K+1),V(:,II,K+1)))
*
* Reorthogonalize
DO J=1,K
HR=DOT_PRODUCT(V(:,II,J),V(:,II,K+1))
H(J,K,II)=H(J,K,II)+HR
V(:,II,K+1)=V(:,II,K+1)-HR*V(:,II,J)
ENDDO
H(K+1,K,II)=SQRT(DOT_PRODUCT(V(:,II,K+1),V(:,II,K+1)))
*
! Watch out do happy breakdown
IF(H(K+1,K,II) /= 0.0D0) V(:,II,K+1)=V(:,II,K+1)/H(K+1,K,II)
*
* Form and store the information for the new Givens rotation
DO I=1,K-1
W1=C(I,II)*H(I,K,II)-S(I,II)*H(I+1,K,II)
W2=S(I,II)*H(I,K,II)+C(I,II)*H(I+1,K,II)
H(I,K,II)=W1
H(I+1,K,II)=W2
ENDDO
ZNU=SQRT(H(K,K,II)**2+H(K+1,K,II)**2)
IF(ZNU /= 0.0D0) THEN
C(K,II)=H(K,K,II)/ZNU
S(K,II)=-H(K+1,K,II)/ZNU
H(K,K,II)=C(K,II)*H(K,K,II)-S(K,II)*H(K+1,K,II)
H(K+1,K,II)=0.0D0
W1=C(K,II)*G(K,II)-S(K,II)*G(K+1,II)
W2=S(K,II)*G(K,II)+C(K,II)*G(K+1,II)
G(K,II)=W1
G(K+1,II)=W2
ENDIF
*
* Update the residual norm
RHO(II)=ABS(G(K+1,II))
REPSI(ITER,II)=REAL(RHO(II)/DENOM(II))
IF(IPRINT.GT.4) WRITE(6,200) ITER,II,REPSI(ITER,II)
EPS(II)=REPSI(ITER,II)
ITST(II)=ITER
IF(RHO(II) < ERRTOL*DENOM(II)) THEN
NCONV(II)=.FALSE.
LNCONV=LNCONV-1
ENDIF
ERROR=MAX(ERROR,RHO(II)/DENOM(II))
ENDDO
ENDDO
*---
* At this point either K > NSTART or RHOGRP < ERRTOL. It's time to
* compute PHIIN and cycle.
*---
DO II=1,NGEFF
K=KMAX(II)
IF(K == 0) CYCLE
G(K,II)=G(K,II)/H(K,K,II)
DO L=K-1,1,-1
W1=G(L,II)-DOT_PRODUCT(H(L,L+1:K,II),G(L+1:K,II))
G(L,II)=W1/H(L,L,II)
ENDDO
DO J=1,K
PHIIN(:,II)=PHIIN(:,II)+REAL(G(J,II)*V(:,II,J))
ENDDO
ENDDO
ENDDO
*----
* Scratch storage deallocation
*----
DEALLOCATE(R, S, C, H, G, V, GAR, RHS)
DEALLOCATE(FLOUT, KMAX, RHO, DENOM)
RETURN
*
100 FORMAT(' MCGMRE: RHS CALCULATED WITH AAC-SCR : ',I2,1H-,I1)
200 FORMAT(' MCGMRE: EPS Iteration ',I5,' Group ',I5,2X,1P,E16.7)
END
|