1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
|
*DECK LIBRSE
SUBROUTINE LIBRSE(IPLIB,IPTMP,MAXTRA,HNAMIS,LBIN,NGRP,NL,NED,
1 NDEL,HVECT,NFS,IMPX,DELI,AWR,IALTER,SVDEPS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Process snapshots for the resonance spectrum expansion method.
*
*Copyright:
* Copyright (C) 2023 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the isotopic directory in microlib.
* IPTMP pointer to the multi-dilution internal library.
* MAXTRA maximum number of energy bins of size DELI.
* HNAMIS local name of the isotope:
* HNAMIS(1:8) is the local isotope name;
* HNAMIS(9:12) is a suffix function of the mix number.
* LBIN number of fine energy groups.
* NGRP number of coarse energy groups.
* NL number of Legendre orders required in the calculation
* (NL=1 or higher).
* NED number of extra vector edits.
* NDEL number of delayed neutron precursor groups.
* HVECT names of the extra vector edits.
* NFS number of fine energy groups in each coarse energy group.
* IMPX print flag (equal to zero for no print).
* DELI elementary lethargy width.
* AWR mass ratio for current isotope.
* IALTER type of approximation (=0: use exponentials; =1: use Taylor
* expansions).
* SVDEPS rank accuracy of the singular value decomposition.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB,IPTMP
INTEGER MAXTRA,LBIN,NGRP,NL,NED,NDEL,NFS(NGRP),IMPX,IALTER
REAL DELI,AWR,SVDEPS
CHARACTER HNAMIS*12,HVECT(NED)*8
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPLIB1,JPLIB2,KPLIB,JPTMP,KPTMP
PARAMETER (MAXITER=100,MAXNOR=12)
CHARACTER TEXT12*12
LOGICAL LGOLD,LRSE
DOUBLE PRECISION DQQ,GAR0,GAR1(3),FFF
CHARACTER(LEN=4),DIMENSION(4),PARAMETER ::
1 HPART=(/'NWT0','NTOT','SIGF','SIGS'/)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NJJ,MRANK
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ISMIN,ISMAX,ISM
REAL, ALLOCATABLE, DIMENSION(:) :: DELTAU,EBIN,UUU,DEL,STR,SIGS,
1 SIGT,PRI,STIS,KSN,DILUT,DELTG,GOLD,SIGP
REAL, ALLOCATABLE, DIMENSION(:,:) :: FLUX,TOTAL,SIGF
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: SIGSD,SADD,ZDEL
REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: SCAT
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: W,PHIGAR,DGAR
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: V,XSDIL,TTT,DDD
DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: U,SSIGS,SSIGT
LOGICAL, ALLOCATABLE, DIMENSION(:) :: LSCAT,LADD
COMPLEX(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: CT,CD
TYPE VECTOR_ARRAY
DOUBLE PRECISION, POINTER, DIMENSION(:) :: VECTOR
END TYPE VECTOR_ARRAY
TYPE MATRIX_ARRAY
DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: MATRIX
END TYPE MATRIX_ARRAY
TYPE(VECTOR_ARRAY), ALLOCATABLE, DIMENSION(:) :: UU_V,U_V,SIGT_V,
1 WEIGHT_V,GAMMA_V
TYPE(MATRIX_ARRAY), ALLOCATABLE, DIMENSION(:) :: PHI_M,DDD_M,U_M,
1 V_M,SIGT_M,T_M,SIGP_M,EFF_M
TYPE(MATRIX_ARRAY), ALLOCATABLE, DIMENSION(:,:) :: SCAT_M,TSCAT_M
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(NJJ(NGRP),MRANK(NGRP))
ALLOCATE(EBIN(LBIN+1),UUU(LBIN+1),DEL(LBIN),STR(LBIN),SIGS(LBIN),
1 SIGT(LBIN),PRI(MAXTRA),STIS(LBIN),EFF_M(NGRP),PHI_M(NGRP),
2 UU_V(NGRP),U_V(NGRP),U_M(NGRP),V_M(NGRP),SIGT_M(NGRP),
3 SCAT_M(NGRP,NGRP),T_M(NGRP),SIGT_V(NGRP),WEIGHT_V(NGRP),
4 GAMMA_V(NGRP),TSCAT_M(NGRP,NGRP),SIGP_M(NGRP),ISM(2,NL))
CALL LCMLEN(IPTMP,'ISOTOPESLIST',NDIL,ITYLCM)
ALLOCATE(FLUX(NGRP,NDIL),TOTAL(NGRP,NDIL),SIGF(NGRP,NDIL),
1 SIGSD(NGRP,NL,NDIL),SCAT(NGRP,NGRP,NL,NDIL),SADD(NGRP,NED,NDIL),
2 ZDEL(NGRP,NDEL,NDIL),DELTG(NGRP),LSCAT(NL),LADD(NED),GOLD(NGRP),
3 ISMIN(NL,NGRP),ISMAX(NL,NGRP))
*----
* ALLOCATE DILUTION-DEPENDENT ARRAYS
*----
ALLOCATE(DILUT(NDIL),KSN(NGRP*NDIL),DELTAU(NGRP))
CALL LCMGET(IPTMP,'DELTAU',DELTAU)
CALL LCMGET(IPTMP,'ISOTOPESDSN',KSN)
DO IDIL=1,NDIL
DILUT(IDIL)=KSN((IDIL-1)*NGRP+1)
ENDDO
DEALLOCATE(KSN)
IF(IMPX.GT.2) THEN
WRITE(6,'(/32H LIBRSE: DILUTIONS FOR ISOTOPE '',A12,2H'':)')
1 HNAMIS
WRITE(6,'(1X,1P,12E12.4)') DILUT(:NDIL)
ENDIF
*----
* RECOVER INFORMATION FROM *TEMPORARY* LCM OBJECT.
*----
NDIL=NDIL-1
CALL LIBEXT(IPTMP,NGRP,NL,NDIL,NED,HVECT,NDEL,.TRUE.,IMPX,DILUT,
1 MDIL,LSCAT,LSIGF,LADD,LGOLD,FLUX,TOTAL,SIGF,SIGSD,SCAT,SADD,
2 ZDEL,DELTG,GOLD,ISMIN,ISMAX)
NDIL=NDIL+1
*----
* COPY INFINITE DILUTION DATA FROM IPTMP TO IPLIB.
*----
JPTMP=LCMGID(IPTMP,'ISOTOPESLIST')
CALL LCMLEL(JPTMP,NDIL,ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
TEXT12=HNAMIS(1:8)
WRITE(TEXT12(9:12),'(I4.4)') NDIL
CALL XABORT('LIBRSE: MISSING LIST ITEM FOR '//TEXT12)
ENDIF
KPTMP=LCMGIL(JPTMP,NDIL) ! set NDIL-th isotope
CALL LCMLEN(KPTMP,'LAMBDA-D',NDEL,ITYLCM)
CALL LCMEQU(KPTMP,IPLIB)
*
* DESTROY THE MULTI-DILUTION INTERNAL LIBRARY.
CALL LCMCL(IPTMP,2)
*----
* RECOVER AUTOLIB DATA.
*----
CALL LCMGET(IPLIB,'BIN-ENERGY',EBIN)
CALL LCMGET(IPLIB,'BIN-NTOT0',SIGT)
CALL LCMGET(IPLIB,'BIN-SIGS00',SIGS)
*----
* NULLIFY POINTERS
*----
DO IG=1,NGRP
NULLIFY(SIGT_M(IG)%MATRIX)
DO JG=1,NGRP
NULLIFY(SCAT_M(IG,JG)%MATRIX)
NULLIFY(TSCAT_M(IG,JG)%MATRIX)
ENDDO
ENDDO
*----
* ELASTIC SCATTERING INFORMATION USED TO REBUILD THE SCAT MATRIX.
*----
IBIN=0
DELMIN=1.0E10
UUU(1)=0.0
DO IG=1,NGRP
FFF=0.0D0
DO LI=1,NFS(IG)
DELM=LOG(EBIN(IBIN+LI)/EBIN(IBIN+LI+1))
UUU(IBIN+LI+1)=LOG(EBIN(1)/EBIN(IBIN+LI+1))
DEL(IBIN+LI)=DELM
DELMIN=MIN(DELMIN,DELM)
FFF=FFF+DELM
ENDDO
FFF=DELTAU(IG)/FFF
DEL(IBIN+1:IBIN+NFS(IG))=DEL(IBIN+1:IBIN+NFS(IG))*REAL(FFF)
IBIN=IBIN+NFS(IG)
ENDDO
CALL LCMLEN(IPLIB,'BIN-DELI',LENGT,ITYLCM)
IF((LENGT.EQ.1).AND.(ITYLCM.EQ.2)) THEN
CALL LCMGET(IPLIB,'BIN-DELI',DELI)
ELSE
DELI=1.0/REAL(INT(1.00001/DELMIN))
ENDIF
PRI(:MAXTRA)=0.0
CALL LIBPRI(MAXTRA,DELI,AWR,IALTER,0,NEXT,PRI)
*----
* SOLVE FLUX CALCULATOR CASES FOR MANY DILUTIONS
*----
LLL=0
DO IG=1,NGRP
LGBIN=NFS(IG)
IF(LGBIN.EQ.0) CYCLE
ALLOCATE(EFF_M(IG)%MATRIX(NDIL,3))
ALLOCATE(PHI_M(IG)%MATRIX(NFS(IG),NDIL))
LLL=LLL+LGBIN
ENDDO
ALLOCATE(PHIGAR(LBIN))
DO IDIL=1,NDIL
PHIGAR(:)=0.0D0
LLL=0
DO IG=1,NGRP
IF(IMPX.GE.9) WRITE(6,'(29H LIBRSE: coarse energy group=,I8,
1 10H dilution=,1P,E12.4)') IG,DILUT(IDIL)
LGBIN=NFS(IG)
IF(LGBIN.EQ.0) CYCLE
LLL1=LLL
GAR0=0.0D0
GAR1(:3)=0.0D0
DO LI=1,LGBIN
LLL=LLL+1
III=1
STR(:LBIN)=0.0
CALL LIBECT(MAXTRA,LLL,PRI,UUU(2),DELI,DEL,NEXT,III,MML,
1 STIS)
DO MM=1,MML
STR(MM)=STR(MM)+STIS(MM)*SIGS(LLL-MM+1)
ENDDO
SIGMA=SIGT(LLL)-STR(1)
DQQ=DILUT(IDIL)*DEL(LLL)
DO MM=2,MIN(LLL,MML)
DQQ=DQQ+STR(MM)*PHIGAR(LLL-MM+1)
ENDDO
PHIGAR(LLL)=DQQ/(DILUT(IDIL)+SIGMA)
GAR0=GAR0+(UUU(LLL+1)-UUU(LLL))
GAR1(1)=GAR1(1)+PHIGAR(LLL)
GAR1(2)=GAR1(2)+SIGT(LLL)*PHIGAR(LLL)
GAR1(3)=GAR1(3)+SIGS(LLL)*PHIGAR(LLL)
ENDDO
FFF=FLUX(IG,IDIL)*GAR0/GAR1(1)
PHI_M(IG)%MATRIX(:LGBIN,IDIL)=PHIGAR(LLL1+1:LLL1+LGBIN)*FFF
EFF_M(IG)%MATRIX(IDIL,:3)=GAR1(:3)*FFF/GAR0
ENDDO
ENDDO
DEALLOCATE(PHIGAR)
*----
* LOOP OVER RESONANT GROUPS
*----
MRANK(:NGRP)=0
ALLOCATE(W(NDIL),V(NDIL,NDIL),DDD_M(NGRP))
LLL=0
DO IG=1,NGRP
NJJ(IG)=0
LRSE=(NFS(IG).GT.0).AND.(GOLD(IG).EQ.-1001.0)
IF(.NOT.LRSE) CYCLE
LGBIN=NFS(IG)
ALLOCATE(U(LGBIN,NDIL))
U(:LGBIN,:NDIL)=PHI_M(IG)%MATRIX(:LGBIN,:NDIL)
!***************** SVD *****************
CALL ALSVDF(U,LGBIN,NDIL,LGBIN,NDIL,W,V)
!***************************************
U_M(IG)%MATRIX=>U
DO IDIL=1,NDIL
IF(W(IDIL).LE.SVDEPS*DELI) THEN
EXIT
ELSE
MRANK(IG)=MRANK(IG)+1
IF(MRANK(IG).GT.20) CALL XABORT('LIBRSE: MRANK OVERFLOW.')
ENDIF
ENDDO
MI=MRANK(IG)
IF(MI.EQ.0) CYCLE
ALLOCATE(V_M(IG)%MATRIX(NDIL,MI))
DO IM=1,MI
V_M(IG)%MATRIX(:NDIL,IM)=V(:NDIL,IM)/W(IM)
ENDDO
!
! compute UU_V and U_V
ALLOCATE(UU_V(IG)%VECTOR(MI),U_V(IG)%VECTOR(MI))
DO IMR1=1,MI
UU_V(IG)%VECTOR(IMR1)=SUM(U_M(IG)%MATRIX(:LGBIN,IMR1))
U_V(IG)%VECTOR(IMR1)=0.0D0
DO LI=1,LGBIN
U_V(IG)%VECTOR(IMR1)=U_V(IG)%VECTOR(IMR1)+DEL(LLL+LI)*
1 U_M(IG)%MATRIX(LI,IMR1)
ENDDO
ENDDO
!
! compute SIGT_M
ALLOCATE(SSIGT(MI,MI))
SSIGT(:,:)=0.0D0
DO LI=1,LGBIN
SIGMA=SIGT(LLL+LI)
DO IMR1=1,MI
DO IMR2=1,MI
SSIGT(IMR1,IMR2)=SSIGT(IMR1,IMR2)+U_M(IG)%MATRIX(LI,IMR1)*
1 SIGMA*U_M(IG)%MATRIX(LI,IMR2)
ENDDO
ENDDO
ENDDO
SIGT_M(IG)%MATRIX=>SSIGT
NULLIFY(SSIGT)
!
! compute SCAT_M
DO JG=1,NGRP
NULLIFY(DDD_M(JG)%MATRIX)
ENDDO
DO LI=1,LGBIN
III=1
STR(:LBIN)=0.0
CALL LIBECT(MAXTRA,LLL+LI,PRI,UUU(2),DELI,DEL,NEXT,III,MML,
1 STIS)
DO MM=1,MML
LLJ=LLL+LI-MM+1
STR(LLJ)=STIS(MM)*SIGS(LLJ)
ENDDO
LLJ=LLL
DO JG=IG,1,-1
LGBIN2=NFS(JG)
IF(LLL+LI-MML+1.GT.LLJ+LGBIN2) EXIT
IF(.NOT.ASSOCIATED(U_M(JG)%MATRIX)) THEN
CALL XABORT('LIBRSE: U_M(JG)%MATRIX IS NOT ASSOCIATED.')
ENDIF
MJ=MRANK(JG)
IF(LI.EQ.1) THEN
NJJ(IG)=NJJ(IG)+1
ALLOCATE(DDD_M(JG)%MATRIX(LGBIN,MJ))
DDD_M(JG)%MATRIX(:LGBIN,:MJ)=0.0D0
ENDIF
DO LJ=1,LGBIN2
DDD_M(JG)%MATRIX(LI,:MJ)=DDD_M(JG)%MATRIX(LI,:MJ)+
1 STR(LLJ+LJ)*U_M(JG)%MATRIX(LJ,:MJ)
ENDDO
IF(JG.GT.1) LLJ=LLJ-NFS(JG-1)
ENDDO
ENDDO
!
NPOS=0
DO JG=IG-NJJ(IG)+1,IG
IF(ASSOCIATED(U_M(IG)%MATRIX).AND.
1 ASSOCIATED(DDD_M(JG)%MATRIX)) THEN
MJ=MRANK(JG)
NPOS=NPOS+1
ALLOCATE(SSIGS(MI,MJ))
SSIGS=MATMUL(TRANSPOSE(U(:LGBIN,:MI)),
1 DDD_M(JG)%MATRIX(:LGBIN,:MJ))
SCAT_M(IG,JG)%MATRIX => SSIGS
NULLIFY(SSIGS)
DEALLOCATE(DDD_M(JG)%MATRIX)
ENDIF
ENDDO
IF(NPOS.EQ.0) CALL XABORT('LIBRSE: NPOS=0.')
*----
* LINEAR TRANSFORMATION
*----
ALLOCATE(T_M(IG)%MATRIX(MI,MI),SIGT_V(IG)%VECTOR(MI))
ALLOCATE(WEIGHT_V(IG)%VECTOR(MI),GAMMA_V(IG)%VECTOR(MI))
ALLOCATE(CT(MI,MI),CD(MI,MI))
CALL ALHQR(MI,MI,SIGT_M(IG)%MATRIX,MAXITER,ITER,CT,CD)
DO LI=1,MI
IF(AIMAG(CD(LI,LI)) /= 0.0D0) THEN
CALL XABORT('LIBRSE: COMPLEX EIGENVALUE FOUND.')
ENDIF
SIGT_V(IG)%VECTOR(LI)=REAL(CD(LI,LI),8)
DO LJ=1,MI
T_M(IG)%MATRIX(LI,LJ)=REAL(CT(LI,LJ),8)
ENDDO
ENDDO
DEALLOCATE(CD,CT)
ALLOCATE(TTT(MI,MI))
TTT(:MI,:MI)=TRANSPOSE(T_M(IG)%MATRIX(:MI,:MI))
WEIGHT_V(IG)%VECTOR=MATMUL(TTT,UU_V(IG)%VECTOR)/DELTG(IG)
GAMMA_V(IG)%VECTOR=MATMUL(TTT,U_V(IG)%VECTOR)
DO JG=1,IG
IF(ASSOCIATED(SCAT_M(IG,JG)%MATRIX)) THEN
MJ=MRANK(JG)
ALLOCATE(TSCAT_M(IG,JG)%MATRIX(MI,MJ))
ALLOCATE(SSIGS(MI,MJ),DDD(MI,MJ))
DDD=MATMUL(SCAT_M(IG,JG)%MATRIX,T_M(JG)%MATRIX)
SSIGS=MATMUL(TTT,DDD)
TSCAT_M(IG,JG)%MATRIX => SSIGS
NULLIFY(SSIGS)
DEALLOCATE(DDD)
ENDIF
ENDDO
DEALLOCATE(TTT)
LLL=LLL+LGBIN
IF(IMPX.EQ.1) THEN
WRITE(6,'(15H LIBRSE: RANK('',A12,2H'',,I4,2H)=,I3)') HNAMIS,
1 IG,MI
ELSE IF(IMPX.GE.2) THEN
WRITE(6,'(/10H LIBRSE: '',A12,27H'' SIGT BASE POINTS IN GROUP,
1 I5,1H:)') HNAMIS,IG
WRITE(6,'(1X,1P,12E12.4)') SIGT_V(IG)%VECTOR(:MI)
ENDIF
IF(IMPX.GE.3) THEN
WRITE(6,'(/10H LIBRSE: '',A12,23H'' NWT0 WEIGHTS IN GROUP,I5,
1 1H:)') HNAMIS,IG
WRITE(6,'(1X,1P,12E12.4)') WEIGHT_V(IG)%VECTOR(:MI)
ENDIF
ENDDO
DEALLOCATE(DDD_M)
*----
* COMPUTE RESONANCE SPECTRUM EXPANSION TABLES
* XSDIL dilution dependent self-shielded cross sections:
* XSDIL(1,:NDIL) self-shielded fluxes;
* XSDIL(2,:NDIL) total self-shielded cross sections;
* XSDIL(3,:NDIL) nu*fission self-shielded cross sections;
* XSDIL(4,:NDIL) P0 scattering cross sections;
* etc.
* XSDIL(j,NDIL) are the infinite dilution values.
*----
ALLOCATE(DGAR(NDIL))
DO IG=1,NGRP
MI=MRANK(IG)
IF(MI.EQ.0) CYCLE
NPART=3+NL+NED+NDEL
DO IL=1,NL
NPART=NPART+MAX(ISMAX(IL,IG)-ISMIN(IL,IG)+1,0)
ENDDO
ALLOCATE(SIGP_M(IG)%MATRIX(NPART,MI),XSDIL(NPART,NDIL))
XSDIL(1,:NDIL)=EFF_M(IG)%MATRIX(:NDIL,1)
XSDIL(2,:NDIL)=EFF_M(IG)%MATRIX(:NDIL,2)
XSDIL(3,:NDIL)=SIGF(IG,:NDIL)*XSDIL(1,:NDIL)
XSDIL(4,:NDIL)=EFF_M(IG)%MATRIX(:NDIL,3)
DGAR(:NDIL)=XSDIL(4,:NDIL)/(SIGSD(IG,1,:NDIL)*XSDIL(1,:NDIL))
DO IL=2,NL
XSDIL(3+IL,:NDIL)=DGAR(:NDIL)*SIGSD(IG,IL,:NDIL)*XSDIL(1,:NDIL)
ENDDO
IF(NPART.EQ.3+NL) EXIT
IOF=3+NL
DO IL=1,NL
IF(LSCAT(IL)) THEN
DO JG=ISMIN(IL,IG),ISMAX(IL,IG)
IOF=IOF+1
XSDIL(IOF,:NDIL)=DGAR(:NDIL)*SCAT(JG,IG,IL,:NDIL)*
1 XSDIL(1,:NDIL)
ENDDO
ENDIF
ENDDO
DO IED=1,NED
IOF=IOF+1
IF((HVECT(IED).EQ.'NINEL').OR.(HVECT(IED).EQ.'NELAS').OR.
1 (HVECT(IED).EQ.'N2N').OR.(HVECT(IED).EQ.'N3N').OR.
2 (HVECT(IED).EQ.'N4N').OR.(HVECT(IED).EQ.'NX').OR.
3 (HVECT(IED).EQ.'STRD')) THEN
XSDIL(IOF,:NDIL)=SADD(IG,IED,:NDIL)*XSDIL(1,:NDIL)
ELSE
XSDIL(IOF,:NDIL)=SADD(IG,IED,:NDIL)*XSDIL(1,:NDIL)
ENDIF
ENDDO
DO IDEL=1,NDEL
IOF=IOF+1
XSDIL(IOF,:NDIL)=ZDEL(IG,IDEL,:NDIL)*XSDIL(1,:NDIL)
ENDDO
IF(IOF.NE.NPART) CALL XABORT('LIBRSE: INVALID NPART.')
ALLOCATE(DDD(NPART,MI))
DDD(:NPART,:MI)=MATMUL(XSDIL(:NPART,:NDIL),
1 V_M(IG)%MATRIX(:NDIL,:MI))
SIGP_M(IG)%MATRIX(:NPART,:MI)=MATMUL(DDD(:NPART,:MI),
1 T_M(IG)%MATRIX(:MI,:MI))
DEALLOCATE(DDD,XSDIL)
IF(IMPX.GE.3) THEN
WRITE(6,'(/10H LIBRSE: '',A12,27H'' TABLE COMPONENTS IN GROUP,
1 I5,1H:)') HNAMIS,IG
DO IPART=1,4
IF(IPART.EQ.1) THEN
WRITE(6,'(1X,A5,1P,12E12.4/(6X,12E12.4))') HPART(IPART),
1 SIGP_M(IG)%MATRIX(1,:MI)
ELSE
WRITE(6,'(1X,A5,1P,12E12.4/(6X,12E12.4))') HPART(IPART),
1 SIGP_M(IG)%MATRIX(IPART,:MI)/SIGP_M(IG)%MATRIX(1,:MI)
ENDIF
ENDDO
ENDIF
ENDDO
DEALLOCATE(DGAR)
*----
* SAVE SCAT_M INFORMATION IN IPLIB
*----
CALL LCMSIX(IPLIB,'PT-TABLE',1)
NPOS=0
DO IG=1,NGRP
DO JG=1,IG
IF(ASSOCIATED(SCAT_M(IG,JG)%MATRIX)) NPOS=NPOS+1
ENDDO
ENDDO
IF(NPOS.EQ.0) GO TO 10
CALL LCMSIX(IPLIB,HNAMIS,1)
JPLIB2=LCMLID(IPLIB,'SCAT_M',NPOS) ! holds TSCAT_M information
IPOS=0
DO IG=1,NGRP
MI=MRANK(IG)
IF(MI.EQ.0) CYCLE
NJJ(IG)=0
DO JG=IG,1,-1
IF(ASSOCIATED(SCAT_M(IG,JG)%MATRIX)) THEN
MJ=MRANK(JG)
IPOS=IPOS+1
IF(IPOS.GT.NPOS) CALL XABORT('LIBRSE: NPOS OVERFLOW.')
NJJ(IG)=NJJ(IG)+1
CALL LCMPDL(JPLIB2,IPOS,MI*MJ,4,TSCAT_M(IG,JG)%MATRIX)
DEALLOCATE(TSCAT_M(IG,JG)%MATRIX)
ENDIF
ENDDO
ENDDO
CALL LCMPUT(IPLIB,'NJJS00',NGRP,1,NJJ)
CALL LCMSIX(IPLIB,' ',2)
*----
* SAVE GROUP-RSE INFORMATION IN IPLIB
*----
10 CALL LCMPUT(IPLIB,'NDEL',1,1,NDEL)
CALL LCMPUT(IPLIB,'SVD-EPS',1,2,SVDEPS)
JPLIB1=LCMLID(IPLIB,'GROUP-RSE',NGRP)
DO IG=1,NGRP
MI=MRANK(IG)
IF(MI.EQ.0) CYCLE
NPART=SIZE(SIGP_M(IG)%MATRIX,1)
KPLIB=LCMDIL(JPLIB1,IG)
LGBIN=NFS(IG)
CALL LCMPUT(KPLIB,'SIGT_V',MI,4,SIGT_V(IG)%VECTOR)
CALL LCMPUT(KPLIB,'WEIGHT_V',MI,4,WEIGHT_V(IG)%VECTOR)
CALL LCMPUT(KPLIB,'GAMMA_V',MI,4,GAMMA_V(IG)%VECTOR)
CALL LCMPUT(KPLIB,'T_M',MI*MI,4,T_M(IG)%MATRIX)
CALL LCMPUT(KPLIB,'U_M',LGBIN*MI,4,U_M(IG)%MATRIX)
CALL LCMPUT(KPLIB,'RSE-TABLE',NPART*MI,4,SIGP_M(IG)%MATRIX)
DEALLOCATE(SIGT_V(IG)%VECTOR,GAMMA_V(IG)%VECTOR,
1 WEIGHT_V(IG)%VECTOR,SIGP_M(IG)%MATRIX)
DO IL=1,NL
ISM(1,IL)=ISMIN(IL,IG)
ISM(2,IL)=ISMAX(IL,IG)
ENDDO
CALL LCMPUT(KPLIB,'ISM-LIMITS',2*NL,1,ISM)
CALL LCMVAL(KPLIB,' ')
ENDDO
*----
* PROCESS UNRESOLVED ENERGY DOMAIN.
*----
JPLIB1=LCMLID(IPLIB,'GROUP-PT',NGRP)
DO IG=1,NGRP
LRSE=(NFS(IG).GT.0).AND.(GOLD(IG).EQ.-1001.0)
IF(LRSE) CYCLE
NPART=3+NL+NED+NDEL
DO IL=1,NL
NPART=NPART+MAX(ISMAX(IL,IG)-ISMIN(IL,IG)+1,0)
ENDDO
ALLOCATE(SIGP(MAXNOR*NPART))
SIGP(:MAXNOR*NPART)=0.0
NDIL=NDIL-1
CALL LIBTAB(IG,NGRP,NL,NDIL,NPART,NED,NDEL,HNAMIS,IMPX,LSCAT,
1 LSIGF,LADD,DILUT,TOTAL,SIGF,SIGSD,SCAT,SADD,ZDEL,1.0,ISMIN,
2 ISMAX,MRANK(IG),SIGP)
NDIL=NDIL+1
*
IF(MRANK(IG).GT.1) THEN
* SAVE THE PROBABILITY TABLE INTO IPLIB.
KPLIB=LCMDIL(JPLIB1,IG)
CALL LCMPUT(KPLIB,'PROB-TABLE',MAXNOR*NPART,2,SIGP)
DO IL=1,NL
ISM(1,IL)=ISMIN(IL,IG)
ISM(2,IL)=ISMAX(IL,IG)
ENDDO
CALL LCMPUT(KPLIB,'ISM-LIMITS',2*NL,1,ISM)
ENDIF
DEALLOCATE(SIGP)
ENDDO
CALL LCMPUT(IPLIB,'NOR',NGRP,1,MRANK)
CALL LCMSIX(IPLIB,' ',2)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DO IG=1,NGRP
LRSE=(NFS(IG).GT.0).AND.(GOLD(IG).EQ.-1001.0)
IF(.NOT.LRSE) CYCLE
DEALLOCATE(U_M(IG)%MATRIX,U_V(IG)%VECTOR,UU_V(IG)%VECTOR)
DEALLOCATE(PHI_M(IG)%MATRIX,EFF_M(IG)%MATRIX)
DEALLOCATE(T_M(IG)%MATRIX,V_M(IG)%MATRIX)
ENDDO
DEALLOCATE(ISMAX,ISMIN)
DEALLOCATE(GOLD,LADD,LSCAT,DELTG,ZDEL,SADD,SCAT,SIGSD,SIGF,TOTAL,
1 FLUX)
DEALLOCATE(DELTAU,DILUT,ISM,SIGP_M,TSCAT_M,WEIGHT_V,GAMMA_V,
1 SIGT_V,T_M,SCAT_M,SIGT_M,V_M,U_M,UU_V,U_V,PHI_M,EFF_M,V,W,STIS,
2 PRI,SIGT,SIGS,STR,DEL,UUU,EBIN)
DEALLOCATE(MRANK,NJJ)
RETURN
END
|