1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
*DECK LIBND3
SUBROUTINE LIBND3(NGF,NGFR,NGRO,NBDIL,SN,SB,DILUS,DELTA,NF,XA,XS,
> XF,XN,GAR1,SCAT,GAR2,WT0)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Interpolate dilution-tabulated information, perform
* Livolant-Jeanpierre normalization and compute self-shielded
* cross sections at specific dilution.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
*
*Author(s): A. Hebert
*
*Parameters: input
* NGF number of fast groups without self-shielding.
* NGFR number of fast and resonance groups.
* NGRO number of energy groups.
* NBDIL number of dilutions.
* SN actual dilution of the nuclide.
* SB dilution of the nuclide, as used in Livolant-Jeanpierre
* normalization.
* DILUS tabulation points in dilution.
* DELTA lethargy widths.
* NF flag set to 3 if fission information is present.
* XA tabulated absorption effective reaction rates.
* XS tabulated scattering effective reaction rates.
* XF tabulated nu*fission effective reaction rates.
* XN tabulated NJOY flux.
* GAR1 infinite dilution cross sections.
* SCAT infinite dilution P0 differential scattering cross sections.
*
*Parameters: output
* GAR2 interpolated self-shielded cross sections.
* WT0 NJOY flux.
*
*Reference:
* Copyright (C) from NDAS Atomic Energy of Canada Limited utility (2006)
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* Subroutine arguments
*----
INTEGER NGF,NGFR,NGRO,NBDIL,NF
REAL SN(NGRO),SB(NGRO),DILUS(NBDIL),DELTA(NGRO),
1 XA(NGFR-NGF,NBDIL),XS(NGFR-NGF,NBDIL),XF(NGFR-NGF,NBDIL),
2 XN(NGFR-NGF,NBDIL),GAR1(NGRO,6),SCAT(NGRO,NGRO),GAR2(NGRO,6),
3 WT0(NGRO)
*----
* Local variables
*----
REAL WW,ZNGAR,SSFACT,AUX,XN3
INTEGER I,IG,IG2
CHARACTER HSMG*131
LOGICAL LCUBIC
PARAMETER(LCUBIC=.TRUE.)
REAL, ALLOCATABLE, DIMENSION(:) :: TERPD,DD,XA2,XS2,XF2,WK
LOGICAL, ALLOCATABLE, DIMENSION(:) :: LINF
*----
* Scratch storage allocation
*----
ALLOCATE(TERPD(NBDIL),LINF(NGRO))
*----
* Dilution interpolation
*----
ALLOCATE(DD(NBDIL))
DO I=1,NBDIL
DD(I)=LOG10(DILUS(I))
ENDDO
ALLOCATE(XA2(NGRO),XS2(NGRO),XF2(NGRO))
DO IG=1,NGF
XA2(IG)=GAR1(IG,2)
XS2(IG)=GAR1(IG,5)
XF2(IG)=GAR1(IG,4)
WT0(IG)=1.0
ENDDO
ALLOCATE(WK(3*NBDIL))
DO IG=NGF+1,NGFR
TERPD(:NBDIL)=0.0
LINF(IG)=SN(IG).EQ.DILUS(NBDIL)
DO I=1,NBDIL
IF(ABS(SN(IG)-DILUS(I)).LE.1.0E-5*ABS(SN(IG))) THEN
TERPD(I)=1.0
GO TO 10
ENDIF
ENDDO
IF((NBDIL.EQ.1).OR.(SN(IG).GE.DILUS(NBDIL))) THEN
* No interpolation above infinite dilution
TERPD(NBDIL)=1.0
ELSE IF((NBDIL.EQ.2).OR.(SN(IG).GE.DILUS(NBDIL-1))) THEN
* One over SN interpolation near infinite dilution
LINF(IG)=.TRUE.
TERPD(NBDIL-1)=DILUS(NBDIL-1)/SN(IG)
TERPD(NBDIL)=1.0-DILUS(NBDIL-1)/SN(IG)
ELSE
* Perform Ceschino cubic interpolation
CALL ALTERP(LCUBIC,NBDIL-1,DD,LOG10(SN(IG)),.FALSE.,
> TERPD,WK)
ENDIF
10 XA2(IG)=0.0
XS2(IG)=0.0
XF2(IG)=0.0
WT0(IG)=0.0
DO I=1,NBDIL
WW=TERPD(I)
IF(ABS(WW).GT.1.0E-6) THEN
XA2(IG)=XA2(IG)+WW*XA(IG-NGF,I)
XS2(IG)=XS2(IG)+WW*XS(IG-NGF,I)
IF(NF.EQ.3) XF2(IG)=XF2(IG)+WW*XF(IG-NGF,I)
WT0(IG)=WT0(IG)+WW*XN(IG-NGF,I)
ENDIF
ENDDO
ENDDO
DEALLOCATE(WK,DD)
*----
* Livolant-Jeanpierre normalization
*----
DO IG=NGF+1,NGFR
IF(SB(IG).NE.SN(IG)) THEN
ZNGAR=-(XA2(IG)+XS2(IG))
DO IG2=1,IG
SSFACT=XS2(IG2)/GAR1(IG2,5)
ZNGAR=ZNGAR+SCAT(IG,IG2)*SSFACT*DELTA(IG2)/DELTA(IG)
ENDDO
XN3=(WT0(IG)-1.0)*SN(IG)
IF(LINF(IG)) THEN
* Use an interpolated value near infinite dilution
AUX=(DILUS(NBDIL-1)/SB(IG))**2
XN3=AUX*XN3+(1.0-AUX)*ZNGAR
XN3=1.0+XN3/SB(IG)
ELSE
XN3=1.0+XN3/SB(IG)
ENDIF
IF((XN3.LE.0.0).OR.(XN3.GT.2.0)) THEN
WRITE (HSMG,100) XN3,IG,SB(IG),SN(IG)
CALL XABORT(HSMG)
ELSE IF(XN3.GT.1.2) THEN
WRITE (HSMG,100) XN3,IG,SB(IG),SN(IG)
WRITE(6,'(1X,A)') HSMG
ENDIF
WT0(IG)=XN3
ENDIF
ENDDO
*----
* Divide effective reaction rates by NJOY flux for obtaining
* self-shielded cross sections
*----
DO I=1,6
DO IG=1,NGRO
GAR2(IG,I)=GAR1(IG,2)
ENDDO
ENDDO
DO IG=NGF+1,NGFR
* Absorption xs
GAR2(IG,2)=XA2(IG)/WT0(IG)
* P0 scattering xs
GAR2(IG,5)=XS2(IG)/WT0(IG)
* nu*fission xs
GAR2(IG,4)=XF2(IG)/WT0(IG)
* Transport-corrected total xs
GAR2(IG,1)=GAR1(IG,1)*(GAR2(IG,2)+GAR2(IG,5))/(GAR1(IG,2)+
> GAR1(IG,5))
* Fission xs
IF((NF.EQ.3).AND.(XF2(IG).EQ.0.0)) THEN
GAR2(IG,3)=GAR1(IG,3)
ELSE IF(NF.EQ.3) THEN
GAR2(IG,3)=GAR1(IG,3)*GAR2(IG,4)/GAR1(IG,4)
ENDIF
* P1 scattering xs
GAR2(IG,6)=GAR1(IG,6)*GAR2(IG,5)/GAR1(IG,5)
ENDDO
DEALLOCATE(XF2,XS2,XA2)
*----
* Scratch storage deallocation
*----
DEALLOCATE(LINF,TERPD)
RETURN
*
100 FORMAT(37H LIBND3: Invalid value of NJOY flux (,1P,E11.3,
1 10H) in group,I4,11H. Dilution=,E11.3,2H (,E11.3,2H).)
END
|