1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
*DECK DUO001
SUBROUTINE DUO001(IPMAC,IPRINT,NMIX,NGRP,NFIS,IDIV,ZKEFF,RHS,LHS,
> FLUX,AFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Processing one of the two macrolibs and return mixture-dependent
* RHS and LHS matrices.
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMAC macrolib.
* IPRINT print parameter.
* NMIX number of mixtures.
* NGRP number of energy groups.
* NFIS number of fissile isotopes.
* IDIV type of divergence term processing (=0: no processing;
* =1: direct processing; =2: adjoint processing;
* =3: direct-adjoint processing).
*
*Parameters: output
* ZKEFF effective multiplication factor.
* RHS absorption macroscopic cross-section matrix.
* LHS production macroscopic cross-section matrix.
* FLUX integrated direct flux.
* AFLUX integrated adjoint flux.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMAC
INTEGER IPRINT,NMIX,NGRP,NFIS,IDIV
REAL ZKEFF,RHS(NGRP,NGRP,NMIX),LHS(NGRP,NGRP,NMIX),
> FLUX(NGRP,NMIX),AFLUX(NGRP,NMIX)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMAC,KPMAC
DOUBLE PRECISION SUM
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: VOL,GAR,GAR2,DLK,ALK,V,W
REAL, ALLOCATABLE, DIMENSION(:,:) :: NUF
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: CHI
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IJJ(NMIX),NJJ(NMIX),IPOS(NMIX))
ALLOCATE(VOL(NMIX),GAR(NMIX),CHI(NMIX,NFIS,NGRP),NUF(NMIX,NFIS),
> GAR2(NMIX*NGRP))
*----
* COMPUTE THE RHS AND LHS MATRICES
*----
RHS(:NGRP,:NGRP,:NMIX)=0.0
LHS(:NGRP,:NGRP,:NMIX)=0.0
CALL LCMGET(IPMAC,'K-EFFECTIVE',ZKEFF)
IF(IPRINT.GT.1) WRITE(6,'(35H DUO001: EFFECTIVE MULTIPLICATION F,
> 6HACTOR=,1P,E12.5)') ZKEFF
CALL LCMGET(IPMAC,'VOLUME',VOL)
JPMAC=LCMGID(IPMAC,'GROUP')
DO IGR=1,NGRP
KPMAC=LCMGIL(JPMAC,IGR)
CALL LCMGET(KPMAC,'CHI',CHI(1,1,IGR))
ENDDO
DO IGR=1,NGRP
KPMAC=LCMGIL(JPMAC,IGR)
CALL LCMGET(KPMAC,'FLUX-INTG',GAR)
DO IBM=1,NMIX
FLUX(IGR,IBM)=GAR(IBM)/VOL(IBM)
ENDDO
CALL LCMLEN(KPMAC,'NWAT0',ILONG,ITYLCM)
IF(ILONG.EQ.NMIX) THEN
CALL LCMGET(KPMAC,'NWAT0',GAR)
DO IBM=1,NMIX
AFLUX(IGR,IBM)=GAR(IBM)
ENDDO
ELSE
AFLUX(:NMIX,IBM)=1.0
ENDIF
CALL LCMGET(KPMAC,'NTOT0',GAR)
CALL LCMGET(KPMAC,'SCAT00',GAR2)
CALL LCMGET(KPMAC,'NJJS00',NJJ)
CALL LCMGET(KPMAC,'IJJS00',IJJ)
CALL LCMGET(KPMAC,'IPOS00',IPOS)
DO IBM=1,NMIX
IPOSDE=IPOS(IBM)
DO JGR=IJJ(IBM),IJJ(IBM)-NJJ(IBM)+1,-1
RHS(IGR,JGR,IBM)=RHS(IGR,JGR,IBM)-GAR2(IPOSDE) ! IGR <-- JGR
IPOSDE=IPOSDE+1
ENDDO
RHS(IGR,IGR,IBM)=RHS(IGR,IGR,IBM)+GAR(IBM)
ENDDO
CALL LCMGET(KPMAC,'NUSIGF',NUF)
DO IBM=1,NMIX
DO IFIS=1,NFIS
DO JGR=1,NGRP
LHS(JGR,IGR,IBM)=LHS(JGR,IGR,IBM)+CHI(IBM,IFIS,JGR)*
> NUF(IBM,IFIS)
ENDDO
ENDDO
ENDDO
ENDDO
*----
* INTRODUCE THE DIRECT OR ADJOINT DIVERGENCE COMPONENT IN THE RHS
* MATRIX
*----
DO IBM=1,NMIX
IF(IDIV.EQ.1) THEN
DO JGR=1,NGRP
SUM=0.0D0
DO IGR=1,NGRP
SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
> FLUX(IGR,IBM)
ENDDO
RHS(JGR,JGR,IBM)=RHS(JGR,JGR,IBM)-REAL(SUM)/FLUX(JGR,IBM)
ENDDO
ELSE IF(IDIV.EQ.2) THEN
DO IGR=1,NGRP
SUM=0.0D0
DO JGR=1,NGRP
SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
> AFLUX(JGR,IBM)
ENDDO
RHS(IGR,IGR,IBM)=RHS(IGR,IGR,IBM)-REAL(SUM)/AFLUX(IGR,IBM)
ENDDO
ELSE IF(IDIV.EQ.3) THEN
ALLOCATE(DLK(NGRP),ALK(NGRP))
DO JGR=1,NGRP
SUM=0.0D0
DO IGR=1,NGRP
SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
> FLUX(IGR,IBM)
ENDDO
DLK(JGR)=REAL(SUM)
ENDDO
DO IGR=1,NGRP
SUM=0.0D0
DO JGR=1,NGRP
SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
> AFLUX(JGR,IBM)
ENDDO
ALK(IGR)=REAL(SUM)
ENDDO
ALLOCATE(V(NGRP),W(NGRP))
CALL DUO005(NGRP,DLK,ALK,FLUX(1,IBM),AFLUX(1,IBM),V,W)
DO IGR=1,NGRP
DO JGR=1,NGRP
RHS(IGR,JGR,IBM)=RHS(IGR,JGR,IBM)-V(IGR)-W(JGR)
ENDDO
ENDDO
DEALLOCATE(W,V,ALK,DLK)
ENDIF
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(GAR2,NUF,CHI,GAR,VOL)
DEALLOCATE(IPOS,NJJ,IJJ)
RETURN
END
|