1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
*DECK THMDRV
SUBROUTINE THMDRV(MPTHM,IMPX,IX,IY,NZ,XBURN,VOLXY,HZ,CFLUX,POROS,
> FNFU,NFD,NDTOT,IFLUID,SNAME,SCOMP,IGAP,IFUEL,FNAME,FCOMP,FCOOL,
> FFUEL,ACOOL,HD,PCH,RAD,
> MAXIT1,MAXITL,ERMAXT,SPEED,TINLET,POUTLET,
> FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,KCONDC,UCONDC,
> IHGAP,KHGAP,IHCONV,KHCONV,WTEFF,IFRCDI,ISUBM,FRO,POW,IPRES,IDFM,
> TCOMB, DCOOL,TCOOL,TSURF,HCOOL,PCOOL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Driver of the steady-state thermal-hydraulics calculation.
*
*Copyright:
* Copyright (C) 2012 Ecole Polytechnique de Montreal.
*
*Author(s):
* A. Hebert
* C. Garrido
* 08/2023: Modifications to include Molten Salt heat transfer in coolant
* C. Garrido
* 07/2024: Modifications to include Molten Salt heat transfer in static
* fuel
* C. Huet
* 02/2025: Modifications to include pressure drop calculation
* R. Guasch & M. Bellier
* 08/2025: Modifications to include mass+momentum+energy conservation equation
* solution using a Drift-Flux Model.
*
*Parameters: input
* MPTHM directory of the THM object containing steady-state
* thermohydraulics data.
* IMPX printing index (=0 for no print).
* IX position of mesh along X direction.
* IY position of mesh along Y direction.
* NZ number of meshes along Z direction (channel direction).
* XBURN burnup distribution in MWday/tonne.
* VOLXY mesh area in the radial plane.
* HZ Z-directed mesh widths.
* CFLUX critical heat flux in W/m^2.
* POROS oxyde porosity.
* FNFU number of active fuel rods in the fuel bundle.
* NFD number of discretization points in fuel region.
* NDTOT number of total discretization points in the the fuel
* pellet and the cladding.
* IFLUID type of fluid (0=H2O; 1=D2O; 2=SALT).
* SNAME Name of the molten salt (e.g. "LiF-BeF2")
* SCOMP Composition of the molten salt (e.g. "0.66-0.34")
* FCOOL power density fraction in coolant.
* FFUEL power density fraction in fuel.
* ACOOL coolant cross section area in m^2.
* HD hydraulic diameter of one assembly in m.
* PCH heating perimeter in m.
* RAD fuel and clad radii in m.
* MAXIT1 maximum number of conduction iterations.
* MAXITL maximum number of center-pellet iterations.
* ERMAXT convergence criterion.
* SPEED inlet flow velocity in m/s.
* TINLET inlet temperature in K.
* POUTLET outlet pressure in Pa.
* FRACPU plutonium fraction in fuel.
* ICONDF fuel conductivity flag (0=Stora-Chenebault or COMETHE/
* 1=user-provided polynomial + inverse term).
* NCONDF degree of user-provided fuel conductivity polynomial.
* KCONDF polynomial coefficients for fuel conductivity in W/m/K^(k+1)
* (except for the two last coefficients which belongs to the
* inverse term).
* UCONDF required unit of temperature in polynomial for fuel
* conductivity (KELVIN or CELSIUS).
* ICONDC clad conductivity flag (0=default/1=user-provided
* polynomial).
* NCONDC degree of user-provided clad conductivity polynomial.
* KCONDC polynomial coefficients for clad conductivity in W/m/K^(k+1).
* UCONDC required unit of temperature in polynomial for clad
* conductivity (KELVIN or CELSIUS).
* IHGAP flag indicating HGAP chosen (0=default/1=user-provided).
* KHGAP fixed user-provided HGAP value in W/m^2/K.
* IHCONV flag indicating HCONV chosen (0=default/1=user-provided).
* KHCONV fixed user-provided HCONV value in W/m^2/K.
* WTEFF surface temperature's weighting factor in effective fuel
* temperature.
* IFRCDI flag indicating if average approximation is forced during
* fuel conductivity evaluation (0=default/1=average
* approximation forced).
* ISUBM subcooling model (0: one-phase; 1: Jens-Lottes model;
* 2: Saha- Zuber model).
* FRO radial power form factors.
* POW power distribution in W.
* IGAP Flag indicating if the gap is considered (0=gap/1=no gap)
* IFUEL type of fuel (0=UO2/MOX; 1=SALT).
* FNAME Name of the molten salt (e.g. "LiF-BeF2")
* FCOMP Composition of the molten salt (e.g. "0.66-0.34")
* IPRES flag indicating if pressure is to be computed (0=nonstant/
* 1=variable).
* IDFM flag indicating if the drift flux model is to be used
* (0=Without modifications(Chexal correlation for epsilon, no drift flux model in the Navier-Stokes equations)
* /1=EPRI/2=MODEBSTION/3=GERAMP/4=HEM1(VGJ=0))
*
*Parameters: output
* TCOMB averaged fuel temperature distribution in K.
* DCOOL coolant density distribution in g/cc.
* TCOOL coolant temperature distribution in K.
* TSURF surface fuel temperature distribution in K.
* HCOOL coolant enthalpty distribution in J/kg.
* PCOOL coolant pressure distribution in Pa.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE t_saltdata
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) MPTHM
INTEGER IMPX,IX,IY,NZ,NFD,NDTOT,IFLUID,MAXIT1,MAXITL,IHGAP,IGAP,
> IFUEL,IPRES, IDFM
REAL XBURN(NZ),VOLXY,CFLUX,POROS,FRACPU,ERMAXT,
> SPEED,TINLET,POUTLET,
> FFUEL(NZ),ACOOL(NZ),RAD(NDTOT-1,NZ),FNFU(NZ),FCOOL(NZ),HZ(NZ),
> KCONDF(NCONDF+3),KCONDC(NCONDC+1),KHGAP,KHCONV,WTEFF,FRO(NFD-1),
> POW(NZ),TCOMB(NZ),DCOOL(NZ),TCOOL(NZ),TSURF(NZ),HCOOL(NZ),
> PCOOL(NZ),MUT(NZ), HD(NZ), PCH(NZ)
CHARACTER UCONDF*12,UCONDC*12
*----
* LOCAL VARIABLES
*----
TYPE(tpdata) STP,FTP
PARAMETER (KMAXO=100,MAXNPO=40)
REAL TRE11(MAXNPO),RADD(MAXNPO),ENT(4),MFLOW,TLC(NZ)
CHARACTER HSMG*131,SNAME*32,SCOMP*32,FNAME*32,FCOMP*32
REAL XS(4),TC1,PC(NZ),TP(NZ),RHOL,XFL(NZ),EPS(NZ),HINLET,
> TCLAD(NZ),ENTH(NZ),SLIP(NZ),AGM(NZ),QFUEL(NZ),QCOOL(NZ),K11,
> VLIQ(NZ),VVAP(NZ)
INTEGER KWA(NZ)
REAL XX2(MAXNPO),XX3(MAXNPO),ZF(2)
DATA XS/-0.861136,-0.339981,0.339981,0.861136/
REAL TBUL(NZ),VGJprime(NZ),HLV(NZ),DGCOOL(NZ),DLCOOL(NZ)
INTEGER I
REAL PINLET, ERRV, ERRP, ERRD, NORMV, NORMP, NORMD
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: VCOOL,TCENT
REAL, ALLOCATABLE, DIMENSION(:,:) :: TEMPT
REAL, ALLOCATABLE, DIMENSION(:) :: PTEMP, VTEMP, DTEMP
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(VCOOL(NZ),TEMPT(NDTOT,NZ),TCENT(NZ))
ALLOCATE(PTEMP(NZ), VTEMP(NZ), DTEMP(NZ))
*----
* COMPUTE THE INLET FLOW ENTHALPY AND VELOCITY
* INITIALIZE PINLET TO POUTLET, WILL BE UPDATED IF IPRES=1
* ELSE PINLET = POUTLET
*----
PINLET = POUTLET
IF(NDTOT.GT.MAXNPO) CALL XABORT('THMDRV: MAXNPO OVERFLOW.')
IF(IFLUID.EQ.0) THEN
CALL THMSAT(PINLET,TSAT)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(PINLET,TSAT)
*CGT TODO: GET ALSO FREEZING??
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSGT(SNAME,SCOMP,STP,IMPX)
CALL THMSST(STP,TSAT,IMPX)
*CGT
ENDIF
IF (IFUEL.EQ.1) THEN
CALL THMSGT(FNAME,FCOMP,FTP,IMPX)
ENDIF
IF(TINLET.GT.TSAT) THEN
WRITE(HSMG,'(27HTHMDRV: INLET TEMPERATURE (,1P,E12.4,
> 40H K) GREATER THAN SATURATION TEMPERATURE.)') TINLET
CALL XABORT(HSMG)
ENDIF
IF(IFLUID.EQ.0) THEN
CALL THMPT(PINLET,TINLET,RHOIN,HINLET,R3,R4,R5)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PINLET,TINLET,RHOIN,HINLET,R3,R4,R5)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TINLET,RHOIN,HINLET,R3,R4,R5,IMPX)
ENDIF
MFLOW=SPEED*RHOIN
HMSUP=HINLET
*----
* INITIALIZE VALUES OF STEAM QUALITIES, VOID FRACTION AND DENSITY
* PRESSURE, VELOCITY AND TEMPERATURE OF THE COOLANT ALONG THE CHANNEL.
*---
DO K=1,NZ
EPS(K)=0.0
XFL(K)=0.0
SLIP(K)=1.0
KWA(K)=0
MUT(K)=0.0
QFUEL(K)=0.0
VGJprime(K)=0.0
HLV(K)=0.0
PCOOL(K)=PINLET
VCOOL(K)=MFLOW/RHOIN
DCOOL(K)=RHOIN
DLCOOL(K)=RHOIN
DGCOOL(K)=0.0
TCOOL(K)=TINLET
HCOOL(K)=HINLET
*----
* COMPUTE THE SATURATION TEMPERATURE AND THE THERMODYNAMIC PROPERTIES
* IF THE PRESSURE DROP IS COMPUTED
*---
IF (IPRES.EQ.1) THEN
IF(POW(K).EQ.0.0) CYCLE
IF(IFLUID.EQ.0) THEN
CALL THMSAT(PCOOL(K),TSAT)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(PCOOL(K),TSAT)
ENDIF
TB=TSAT-0.1
IF(TCOOL(K).LT.TB) THEN
IF(IFLUID.EQ.0) THEN
CALL THMPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TCOOL(K),R11,H11,K11,MUT(K),C11,IMPX)
ENDIF
ELSE
IF(IFLUID.EQ.0) THEN
CALL THMPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TB,R11,H11,K11,MUT(K),C11,IMPX)
ENDIF
ENDIF
ENDIF
ENDDO
*----
* MAIN LOOP ALONG THE 1D CHANNEL.
*----
ERRV = 1.0
ERRP = 1.0
ERRD = 1.0
NORMP = PINLET
NORMV = SPEED
NORMD = RHOIN
I=0
IF (IPRES .EQ. 0) GOTO 30
10 CONTINUE
*----
* UPDATE HINLET FUNCTION OF INLET PRESSURE AND TEMPERATURE
*----
HMSUP=HINLET
SPEED=MFLOW/DCOOL(1)
*----
* WHILE LOOP FOR PRESSURE AND VELOCITY CONVERGENCE
* CHECK FOR CONVERGENCE
*----
IF (I .GT. 1000) GOTO 20
IF ((ERRP.LT.5E-4).AND.(ERRV.LT.5E-4).AND.(IDFM.EQ.0)) GOTO 20
IF ((IDFM.GT.0).AND.(I.GT.3)) THEN
IF ((ERRP.LT.5E-4).AND.(ERRV.LT.5E-4).AND.(ERRD.LT.5E-4)) THEN
GOTO 20
ENDIF
ENDIF
I = I + 1
PTEMP = PCOOL
VTEMP = VCOOL
DTEMP = DCOOL
SPEED = MFLOW/DCOOL(1)
CALL THMPV(SPEED, PCOOL(NZ), VCOOL, DCOOL,
> PCOOL, TCOOL, MUT, XFL, HD, NZ,
> HZ, EPS, DLCOOL,DGCOOL, VGJprime, IDFM, ACOOL)
* Extrapolate from first two values of PCOOL to get PINLET at first face.
* This ensures that computed HINLET is not HCOOL(1)
PINLET = (3.0/2.0)*PCOOL(1) - (1.0/2.0)*PCOOL(2)
IF (IFLUID.EQ.0) THEN
CALL THMPT(PINLET, TINLET, RHOIN, HINLET, R3, R4, R5)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PINLET,TINLET,RHOIN,HINLET,R3,R4,R5)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TINLET,RHOIN,HINLET,R3,R4,R5,IMPX)
ENDIF
* Update inlet enthalpy based on computed inlet pressure.
HMSUP = HINLET
30 CONTINUE
*----
* MAIN LOOP ALONG THE 1D CHANNEL.
*----
K0=0 ! onset of nucleate boiling point
DO K=1,NZ
IF(POW(K).EQ.0.0) CYCLE
IF(IFLUID.EQ.0) THEN
CALL THMSAT(PCOOL(K),TSAT)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(PCOOL(K),TSAT)
ENDIF
TBUL(K)=TSAT
*----
* COMPUTE THE LINEAR POWER, THE VOLUMIC POWER AND THE THERMAL EXCHANGE
* COEFFICIENT OF THE GAP
*----
DV=VOLXY*HZ(K)
* linear power in W/m
POWLIN=(POW(K)/DV)*VOLXY/FNFU(K)
* volumic power in W/m^3
QFUEL(K)=POW(K)*FFUEL(K)/DV
QCOOL(K)=POW(K)*FCOOL(K)/DV
*----
* INITIALIZATION OF PINCELL TEMPERATURES
*----
IF(POW(K).EQ.0.0) CYCLE
IF(IMPX.GT.4) WRITE(6,190) K
DO L=1,NDTOT
TRE11(L)=TCOMB(K)
ENDDO
DO L=1,NDTOT-1
RADD(L)=RAD(L,K)
ENDDO
*----
* COMPUTE THE POWER DENSITY AND HEAT FLOW ALONG THE CHANNEL
*----
* out-of-clad heat flow in W/m2
IF(IMPX.GT.5) WRITE(6,'(15H THMDRV: QFUEL(,I5,2H)=,1P,E12.4,
> 6H W/m2.)') K,QFUEL(K)
PHI2=0.5*QFUEL(K)*RAD(NFD,K)**2/RAD(NDTOT-1,K)
IF(PHI2.GT.CFLUX) THEN
WRITE(HSMG,'(23HTHMDRV: THE HEAT FLUX (,1P,E12.4,5H) IS ,
> 37HGREATER THAN THE CRITICAL HEAT FLUX (,E12.4,2H).)')
> PHI2,CFLUX
CALL XABORT(HSMG)
ENDIF
*----
* COMPUTE FOUR VALUES OF ENTHALPY IN J/KG TO BE USED IN GAUSSIAN
* INTEGRATION. DELTH1 IS THE ENTHALPY INCREASE IN EACH AXIAL MESH.
*----
IF (IDFM.EQ.0) THEN
DELTH1=(PCH(K)/ACOOL(K)*PHI2+QCOOL(K))*HZ(K)/MFLOW
ELSE
DELTH1= (PCH(K)/ACOOL(K)*PHI2+QCOOL(K))*HZ(K)*ACOOL(K)
ENDIF
IF ((K.GT.1).AND.(IDFM.GT.0)) THEN
DELTH1= (PCH(K)/ACOOL(K)*PHI2+QCOOL(K))*HZ(K)*ACOOL(K)
DELTH1 = DELTH1 + ((VCOOL(K-1) + EPS(K-1)*(DLCOOL(K-1)-
> DGCOOL(K-1))/DCOOL(K-1)*VGJprime(K-1))
> + (VCOOL(K) + EPS(K)*(DLCOOL(K)-DGCOOL(K))/
> DCOOL(K)*VGJprime(K)))/2*(PCOOL(K-1)*ACOOL(K-1)-PCOOL(K)
> *ACOOL(K))
DELTH1 = DELTH1 +(EPS(K-1)*DGCOOL(K-1)*(DLCOOL(K-1)/
> DCOOL(K-1))*HLV(K-1)*VGJprime(K-1)*ACOOL(K-1))-(EPS(K)*
> DGCOOL(K)*(DLCOOL(K)/DCOOL(K))*HLV(K)*VGJprime(K)*ACOOL(K))
DELTH1 = DELTH1/MFLOW/ACOOL(K)
ENDIF
DO I1=1,4
POINT=(1.0+XS(I1))/2.0
ENT(I1)=HMSUP+POINT*DELTH1
ENDDO
HMSUP=HMSUP+DELTH1
*----
* COMPUTE THE VALUE OF THE DENSITY AND THE CLAD-COOLANT HEAT TRANSFER
* COEFFICIENT
*----
IF(K.GT.1) THEN
XFL(K)=XFL(K-1)
EPS(K)=EPS(K-1)
SLIP(K)=SLIP(K-1)
ENDIF
*CGT
IF ((IFLUID.EQ.0).OR.(IFLUID.EQ.1)) THEN
CALL THMH2O(0,IX,IY,K,K0,PCOOL(K),MFLOW,HMSUP,ENT,HD(K),
> IFLUID,IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,VCOOL(K),
> IDFM,PHI2,XFL(K),EPS(K),SLIP(K),ACOOL(K),PCH(K),HZ(K),TCALO,
> RHO,RHOL,RHOG,TRE11(NDTOT),KWA(K),VGJprime(K),HLV(K))
ELSEIF (IFLUID.EQ.2) THEN
CALL THMSAL(IMPX,0,IX,IY,K,K0,MFLOW,HMSUP,ENT,HD(K),STP,
> IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,PHI2,XFL(K),
> EPS(K),SLIP(K),HZ(K),TCALO,RHO,RHOL,TRE11(NDTOT),
> KWA(K))
ENDIF
*CGT
*----
* STEADY-STATE SOLUTION OF THE CONDUCTION EQUATIONS IN A FUEL PIN.
*----
DTINV=0.0
IF(IGAP.EQ.0) THEN
CALL THMROD(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV,RADD,
> TRE11,TRE11,QFUEL(K),FRO,TRE11(NDTOT),POWLIN,XBURN(K),
> POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,
> KCONDC,UCONDC,IHGAP,KHGAP,IFRCDI,TC1,XX2,XX3,ZF)
ELSE
CALL THMRNG(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV,RADD,
> TRE11,TRE11,QFUEL(K),FRO,TRE11(NDTOT),XBURN(K),
> POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,
> KCONDC,UCONDC,IFRCDI,IFUEL,FTP,TC1,XX2,XX3,ZF)
ENDIF
*
DO K1=1,NDTOT-1
TRE11(K1)=XX2(K1)+TRE11(NDTOT)*XX3(K1)
ENDDO
*----
* RECOVER MESHWISE TEMPERATURES AND FLUID DENSITY. BY DEFAULT, USE THE
* ROWLANDS FORMULA TO COMPUTE THE EFFECTIVE FUEL TEMPERATURE, OTHERWISE
* USE USER-SPECIFIED WEIGHTING FACTOR.
*----
TCOMB(K)=(1.0-WTEFF)*TC1+WTEFF*TRE11(NFD)
TCENT(K)=TC1
TSURF(K)=TRE11(NFD)
TCLAD(K)=TRE11(NDTOT)
TCOOL(K)=TCALO
DCOOL(K)=RHO
DLCOOL(K)=RHOL
HCOOL(K)=HMSUP
PC(K)=PINLET
TP(K)=TCLAD(K)
TLC(K)=TCOOL(K)
ENTH(K)=HCOOL(K)
AGM(K)=MFLOW ! constant flow rate
DO K2=1,NDTOT
TEMPT(K2,K)=TRE11(K2)
ENDDO
IF (IPRES .EQ. 0) THEN
PCOOL(K)=PINLET
VCOOL(K)=MFLOW/DCOOL(K)
ENDIF
*----
* COMPUTE THE SATURATION TEMPERATURE AND THE THERMODYNAMIC PROPERTIES
* IF THE PRESSURE DROP IS COMPUTED
*---
IF (IPRES.EQ.1) THEN
IF(POW(K).EQ.0.0) CYCLE
IF(IFLUID.EQ.0) THEN
CALL THMSAT(PCOOL(K),TSAT)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(PCOOL(K),TSAT)
ENDIF
TB=TSAT-0.1
IF(TCOOL(K).LT.TB) THEN
IF(IFLUID.EQ.0) THEN
CALL THMPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TCOOL(K),R11,H11,K11,MUT(K),C11,IMPX)
ENDIF
ELSE
IF(IFLUID.EQ.0) THEN
CALL THMPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TB,R11,H11,K11,MUT(K),C11,IMPX)
ENDIF
ENDIF
ENDIF
ENDDO
*----
* IF THE PRESSURE DROP IS COMPUTED, COMPUTE THE
* THE PRESSURE AND VELOCITY RESIDUALS
* IF DFM IS ACTIVATED, COMPUTE DCOOL RESIDUALS
*----
IF (IPRES .EQ. 0) GOTO 20
ERRV = 0.0
ERRP = 0.0
ERRD = 0.0
NORMV = 0.0
NORMP = 0.0
NORMD = 0.0
DO K=1,NZ
* Under relaxation of coolant pressure and velocity.
VCOOL(K) = 0.40*VCOOL(K) + (1.00-0.40)*VTEMP(K)
PCOOL(K) = 0.40*PCOOL(K) + (1.00-0.40)*PTEMP(K)
ERRV = ERRV + (VCOOL(K)-VTEMP(K))**2
NORMV = NORMV + VCOOL(K)**2
ERRP = ERRP + (PCOOL(K)-PTEMP(K))**2
NORMP = NORMP + PCOOL(K)**2
IF (IDFM.GT.0) THEN
* Under relaxation of coolant density.
DCOOL(K) = 0.40*DCOOL(K) + (1.00-0.40)*DTEMP(K)
ERRD = ERRD + (DCOOL(K) - DTEMP(K))**2
NORMD = NORMD + DCOOL(K)**2
ENDIF
ENDDO
NORMV = SQRT(NORMV)
NORMP = SQRT(NORMP)
ERRV = SQRT(ERRV) / NORMV
ERRP = SQRT(ERRP) / NORMP
IF (IDFM.GT.0) THEN
NORMD = SQRT(NORMD)
ERRD = SQRT(ERRD) / NORMD
ENDIF
GO TO 10
20 CONTINUE
IF (I.GE.1000) THEN
PRINT *, 'ERRV =', ERRV
PRINT *, 'ERRP =', ERRP
PRINT *, 'ERRD =', ERRD
CALL XABORT('THMDRV: MAXIMUM NB OF ITERATIONS REACHED.')
ELSE IF(IMPX.GT.0) THEN
WRITE(6,'(37H THMDRV: CONVERGENCE REACHED AT ITER=,I5,1H.)') I
ENDIF
*----
* RECONSTRUCT THE PHASE VELOCITIES FROM VCOOL, EPS and VGJ
*----
DO K=1,NZ
IF (IDFM .GT. 0) THEN
VLIQ(K) = VCOOL(K) - (1.0/(1.0- EPS(K)) - DLCOOL(K)/DCOOL(K))
> * VGJprime(K)
VVAP(K) = VCOOL(K) + DLCOOL(K)/DCOOL(K) *VGJprime(K)
ELSE
VLIQ(K) = VCOOL(K)
VVAP(K) = VCOOL(K)
ENDIF
ENDDO
*----
* PRINT THE THERMOHYDRAULICAL PARAMETERS
*----
IF(IMPX.GT.4) THEN
WRITE(6,250) 'POW', POW(:NZ)
WRITE(6,250) 'PCOOL', PCOOL(:NZ)
WRITE(6,250) 'VCOOL', VCOOL(:NZ)
WRITE(6,250) 'DCOOL', DCOOL(:NZ)
WRITE(6,250) 'TCOOL', TCOOL(:NZ)
WRITE(6,250) 'EPS', EPS(:NZ)
WRITE(6,250) 'XFL', XFL(:NZ)
WRITE(6,250) 'TSAT', TBUL(:NZ)
WRITE(6,250) 'MUT', MUT(:NZ)
ENDIF
*----
* PRINT THE OUTLET THERMOHYDRAULICAL PARAMETERS
*----
IF(IMPX.GT.3) THEN
WRITE(6,'(/16H THMDRV: CHANNEL,2I6/1X,27(1H-))') IX,IY
WRITE(6,210) ' ____________________________________________',
> '_____________________________________________________',
> '_____________________________________________________',
> '______________'
WRITE(6,210) '| | TCOMB | TSURF | DCOOL ',
> ' | TCOOL | PCOOL | HCOOL | ',
> 'QFUEL | QCOOL | VOID | QUAL |',
> ' SLIP | FLOW |',
> '| | K | K | Kg/m3 | ',
> ' K | Pa | J/Kg | W/m3 ',
> ' | W/m3 | | | ',
> ' | REGIME |'
WRITE(6,210) '|_____|____________|____________|____________',
> '_|_____________|_____________|_____________|_________',
> '____|_____________|___________|_____________|________',
> '_____|________|'
DO L=NZ,1,-1
IF(L.EQ.1) THEN
WRITE(6,220) '| BOT |',TCOMB(L),' |',TSURF(L),
> ' |',DCOOL(L),' |',TCOOL(L),' |',PCOOL(L),
> ' |',HCOOL(L),' |',QFUEL(L),' |',QCOOL(L),' |',
> EPS(L),' |',XFL(L),' |',SLIP(L),' |',KWA(L),' |'
ELSEIF(L.EQ.NZ) THEN
WRITE(6,220) '| TOP |',TCOMB(L),' |',TSURF(L),
> ' |',DCOOL(L),' |',TCOOL(L),' |',PCOOL(L),
> ' |',HCOOL(L),' |',QFUEL(L),' |',QCOOL(L),' |',
> EPS(L),' |',XFL(L),' |',SLIP(L),' |',KWA(L),' |'
ELSE
WRITE(6,230) '| ',L,' |',TCOMB(L),' |',TSURF(L),
> ' |',DCOOL(L),' |',TCOOL(L),' |',PCOOL(L),
> ' |',HCOOL(L),' |',QFUEL(L),' |',QCOOL(L),' |',
> EPS(L),' |',XFL(L),' |',SLIP(L),' |',KWA(L),' |'
ENDIF
ENDDO
WRITE(6,210) '|_____|____________|____________|____________',
> '_|_____________|_____________|_____________|_________',
> '____|_____________|___________|_____________|________',
> '_____|________|'
WRITE(6,240) MFLOW
ENDIF
*----
* MODIFICATION OF THE VECTORS TO FIT THE GEOMETRY OF THE CHANNELS AND
* THE BUNDLES AND WRITE THE DATA IN LCM OBJECT THM
*----
CALL LCMPUT(MPTHM,'PRESSURE',NZ,2,PCOOL)
CALL LCMPUT(MPTHM,'DENSITY',NZ,2,DCOOL)
CALL LCMPUT(MPTHM,'LIQUID-DENS',NZ,2,DLCOOL)
CALL LCMPUT(MPTHM,'ENTHALPY',NZ,2,HCOOL)
CALL LCMPUT(MPTHM,'VELOCITIES',NZ,2,VCOOL)
CALL LCMPUT(MPTHM,'V-LIQ',NZ,2,VLIQ)
CALL LCMPUT(MPTHM,'V-VAP',NZ,2,VVAP)
CALL LCMPUT(MPTHM,'EPSILON',NZ,2,EPS)
CALL LCMPUT(MPTHM,'EPSOUT',1,2,EPS(NZ))
CALL LCMPUT(MPTHM,'XFL',NZ,2,XFL)
CALL LCMPUT(MPTHM,'CENTER-TEMPS',NZ,2,TCENT)
CALL LCMPUT(MPTHM,'COOLANT-TEMP',NZ,2,TCOOL)
CALL LCMPUT(MPTHM,'POWER',NZ,2,POW)
CALL LCMPUT(MPTHM,'TEMPERATURES',NDTOT*NZ,2,TEMPT)
CALL LCMPUT(MPTHM,'PINLET',1,2,PINLET)
CALL LCMPUT(MPTHM,'TINLET',1,2,TINLET)
CALL LCMPUT(MPTHM,'VINLET',1,2,SPEED)
CALL LCMPUT(MPTHM,'POULET',1,2,POUTLET)
CALL LCMPUT(MPTHM,'RADII',(NDTOT-1)*NZ,2,RAD)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(TCENT,TEMPT,VCOOL)
DEALLOCATE(PTEMP, VTEMP, DTEMP)
RETURN
*
190 FORMAT(/21H THMDRV: AXIAL SLICE=,I5)
210 FORMAT(1X,A,A,A,A)
220 FORMAT(1X,A,F11.2,A,F11.2,A,F12.4,A,F12.2,A,3P,E12.4,
> A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,E12.4,A,
> E12.4,A,I5,2X,A)
230 FORMAT(1X,A,I3,A,F11.2,A,F11.2,A,F12.4,A,F12.2,A,3P,E12.4,
> A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,E12.4,A,
> E12.4,A,I5,2X,A)
240 FORMAT(7H MFLXT=,1P,E12.4,8H Kg/m2/s)
250 FORMAT(9H THMDRV: ,A6,1H:,1P,11E12.4/(4X,12E12.4))
END
|