summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDsybil.tex
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE351/SectDsybil.tex
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE351/SectDsybil.tex')
-rw-r--r--doc/IGE351/SectDsybil.tex335
1 files changed, 335 insertions, 0 deletions
diff --git a/doc/IGE351/SectDsybil.tex b/doc/IGE351/SectDsybil.tex
new file mode 100644
index 0000000..475cd4c
--- /dev/null
+++ b/doc/IGE351/SectDsybil.tex
@@ -0,0 +1,335 @@
+\subsection{The \moc{sybilt} dependent records and sub-directories on a
+\dir{tracking} directory}\label{sect:sybiltrackingdir}
+
+When the \moc{SYBILT:} operator is used ($\mathsf{CDOOR}$={\tt 'SYBIL'}), the following elements in the vector
+$\mathcal{S}^{t}_{i}$ will also be defined.
+
+\begin{itemize}
+\item The main SYBIL model $\mathcal{S}^{t}_{6}$
+
+\begin{displaymath}
+\mathcal{S}^{t}_{6} = \left\{
+\begin{array}{rl}
+ 2 & \textrm{Pure geometry} \\
+ 3 & \textrm{Do-it-yourself geometry} \\
+ 4 & \textrm{2-D assembly geometry} \\
+\end{array} \right.
+\end{displaymath}
+
+\item Minimum space required to store tracks for assembly geometry $\mathcal{S}^{t}_{7}$
+
+\item Minimum space required to store interface currents for assembly geometry $\mathcal{S}^{t}_{8}$
+
+\item Number of additional unknowns holding the interface currents
+$\mathcal{S}^{t}_{9}$. These unknowns are used if and only if a current--based
+inner iterative method is set (with option \moc{ARM}).
+
+\end{itemize}
+
+The following sub-directories will also be present on the main level of a \dir{tracking}
+directory.
+
+\begin{DescriptionEnregistrement}{The \moc{sybilt} records and sub-directories in
+\dir{tracking}}{8.0cm}\label{table:puregeom}
+\RealEnr
+ {EPSJ\blank{8}}{$1$}{$1$}
+ {Stopping criterion for flux-current iterations of the interface current method}
+\OptDirEnr
+ {PURE-GEOM\blank{3}}{$\mathcal{S}^{t}_{6}=2$}
+ {Sub-directory containing the data related to a pure geometry}
+\OptDirEnr
+ {DOITYOURSELF}{$\mathcal{S}^{t}_{6}=3$}
+ {Sub-directory containing the data related to a do-it-yourself geometry}
+\OptDirEnr
+ {EURYDICE\blank{4}}{$\mathcal{S}^{t}_{6}=4$}
+ {Sub-directory containing the data related to an assembly geometry}
+\end{DescriptionEnregistrement}
+
+\vskip -0.4cm
+\noindent
+where the sub-directories in Table~\ref{table:puregeom} are described in the following subsections.
+
+\subsubsection{The \moc{/PURE-GEOM/} sub-directory in \moc{sybilt}}\label{sect:puregeomtrackingdir}
+
+\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt}
+\moc{/PURE-GEOM/} sub-directory}{8.0cm}
+\IntEnr
+ {PARAM\blank{7}}{$6$}
+ {Record containing the parameters for a SYBIL tracking on a pure geometry $\mathcal{P}_{i}$}
+\IntEnr
+ {NCODE\blank{7}}{$6$}
+ {Record containing the types of boundary conditions on each surface $N_{\beta,j}$}
+\RealEnr
+ {ZCODE\blank{7}}{$6$}{$1$}
+ {Record containing the albedo value on each surface}
+\OptRealEnr
+ {XXX\blank{9}}{$\mathcal{P}_{4}+1$}{$\mathcal{P}_{4}\ge 1$}{cm}
+ {$x-$directed mesh coordinates after mesh-splitting for type
+ 2, 5 and 7 geometries. Region-ordered radius after mesh-splitting for type 3 and 6
+ geometries}
+\OptRealEnr
+ {YYY\blank{9}}{$\mathcal{P}_{5}+1$}{$\mathcal{P}_{5}\ge 1$}{cm}
+ {$y-$directed mesh coordinates after mesh-splitting for type 5, 6 and 7 geometries}
+\OptRealEnr
+ {ZZZ\blank{9}}{$\mathcal{P}_{6}+1$}{$\mathcal{P}_{6}\ge 1$}{cm}
+ {$z-$directed mesh coordinates after mesh-splitting for type 7 and 9 geometries}
+\OptRealEnr
+ {SIDE\blank{8}}{$1$}{$\mathcal{P}_{1}\ge 8$}{cm}
+ {Side of a hexagon for type 8 and 9 geometries}
+\end{DescriptionEnregistrement}
+
+\vskip -0.2cm
+\noindent
+with the dimension parameter $\mathcal{P}_{i}$, representing:
+
+\begin{itemize}
+\item The type of geometry $\mathcal{P}_{1}$
+\begin{displaymath}
+\mathcal{P}_{1} = \left\{
+\begin{array}{rl}
+ 2 & \textrm{Cartesian 1-D geometry} \\
+ 3 & \textrm{Tube 1-D geometry} \\
+ 4 & \textrm{Spherical 1-D geometry} \\
+ 5 & \textrm{Cartesian 2-D geometry} \\
+ 6 & \textrm{Tube 2-D geometry} \\
+ 7 & \textrm{Cartesian 3-D geometry} \\
+ 8 & \textrm{Hexagonal 2-D geometry} \\
+ 9 & \textrm{Hexagonal 3-D geometry} \\
+\end{array} \right.
+\end{displaymath}
+
+\item The type of hexagonal symmetry $\beta_{h}=\mathcal{P}_{2}$
+\begin{displaymath}
+\beta_{h} = \left\{
+\begin{array}{rl}
+ 1 & \textrm{S30} \\
+ 2 & \textrm{SA60} \\
+ 3 & \textrm{SB60} \\
+ 4 & \textrm{S90} \\
+ 5 & \textrm{R120} \\
+ 6 & \textrm{R180} \\
+ 7 & \textrm{SA180} \\
+ 8 & \textrm{SB180} \\
+ 9 & \textrm{COMPLETE} \\
+\end{array} \right.
+\end{displaymath}
+
+\item The quadrature parameter $\mathcal{P}_{3}$
+
+\item The number of $x-$directed or radial mesh intervals in the geometry $\mathcal{P}_{4}$
+
+\item The number of $y-$directed mesh intervals in the geometry $\mathcal{P}_{5}$
+
+\item The number of $z-$directed mesh intervals in the geometry $\mathcal{P}_{6}$
+
+\end{itemize}
+
+The type of boundary conditions used will be defined in the following way
+\begin{displaymath}
+N_{\beta,j} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Not used} \\
+ 1 & \textrm{Void boundary condition} \\
+ 2 & \textrm{Reflection boundary condition} \\
+ 3 & \textrm{Diagonal reflection boundary condition} \\
+ 4 & \textrm{Translation boundary condition condition} \\
+ 5 & \textrm{Symmetric reflection boundary condition} \\
+ 6 & \textrm{Albedo boundary condition} \\
+\end{array} \right.
+\end{displaymath}
+
+\subsubsection{The \moc{/DOITYOURSELF/} sub-directory in \moc{sybilt}}\label{sect:doittrackingdir}
+
+\vskip -0.9cm
+
+\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt}
+\moc{/DOITYOURSELF/} sub-directory}{8.0cm}
+\IntEnr
+ {PARAM\blank{7}}{$3$}
+ {Record containing the parameters for a SYBIL tracking on a do-it-yourself geometry
+ $\mathcal{P}_{i}$}
+\IntEnr
+ {NMC\blank{9}}{$M+1$}
+ {Offset of the first region in each cell}
+\RealEnr
+ {RAYRE\blank{7}}{$N_r+M$}{cm}
+ {Radius of the tubes in each cell}
+\RealEnr
+ {PROCEL\blank{6}}{$M,M$}{}
+ {Geometric matrix}
+\RealEnr
+ {POURCE\blank{6}}{$M$}{}
+ {Weight assigned to each cell}
+\RealEnr
+ {SURFA\blank{7}}{$M$}{cm$^{2}$}
+ {Surface of each cell }
+\end{DescriptionEnregistrement}
+\noindent
+with the dimension parameter $\mathcal{P}_{i}$, representing:
+
+\begin{itemize}
+\item The number of cells $\mathcal{P}_{1}=M$
+
+\item The quadrature parameter $\mathcal{P}_{2}$
+
+\item The statistical option $\mathcal{P}_{3}$
+\begin{displaymath}
+\mathcal{P}_{3} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{the statistical approximation is not used. Record {\tt 'PROCEL'} is used.} \\
+ 1 & \textrm{use the statistical approximation. Record {\tt 'PROCEL'} is not used.}
+\end{array} \right.
+\end{displaymath}
+
+\end{itemize}
+
+\clearpage
+
+\subsubsection{The \moc{/EURYDICE/} sub-directory in \moc{sybilt}}\label{sect:eurydicetrackingdir}
+
+\vskip -0.9cm
+
+\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt}
+\moc{/EURYDICE/} sub-directory}{8.0cm}
+\IntEnr
+ {PARAM\blank{7}}{$16$}
+{Record containing the parameters for a SYBIL tracking on an assembly geometry
+ $\mathcal{P}_{i}$}
+\RealEnr
+ {XX\blank{10}}{$\mathcal{P}_{6}$}{cm}
+ {$x-$thickness of the generating cells}
+\RealEnr
+ {YY\blank{10}}{$\mathcal{P}_{6}$}{cm}
+ {$y-$thickness of the generating cells}
+\IntEnr
+ {LSECT\blank{7}}{$\mathcal{P}_{6}$}
+ {Type of sectorization for each each generating cell. Equal to zero for
+ non-sectorized cells. Allowed values are defined as $F_{\mathrm{sec}}$ in \Sect{geometrydirmain}}
+\IntEnr
+ {NMC\blank{9}}{$\mathcal{P}_{6}+1$}
+ {Offset of the first region index in each generating cell}
+\IntEnr
+ {NMCR\blank{8}}{$\mathcal{P}_{6}+1$}
+ {Offset of the first radius index in each generating cell. Equal to
+ {\tt NMC}, unless the cell is sectorized.}
+\RealEnr
+ {RAYRE\blank{7}}{$M_r$}{cm}
+ {Radius of the tubes in each generating cell. $M_r=${\tt NMCR(}$\mathcal{P}_{6}+1${\tt )}}
+\IntEnr
+ {MAIL\blank{8}}{$2,\mathcal{P}_{6}$}
+ {Offsets of the first tracking information in each generating cell. {\tt
+ MAIL(1,:)} contains offsets for the integer array {\tt ZMAILI}; {\tt
+ MAIL(2,:)} contains offsets for the real array {\tt ZMAILR}.}
+\IntEnr
+ {ZMAILI\blank{6}}{$\mathcal{P}_{15}$}
+ {The integer tracking information}
+\RealEnr
+ {ZMAILR\blank{6}}{$\mathcal{P}_{16}$}{cm}
+ {The tracking lengths}
+\IntEnr
+ {IFR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}
+ {Index numbers of incoming currents}
+\RealEnr
+ {ALB\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{}
+ {Albedo or transmission factors corresponding to incoming currents}
+\IntEnr
+ {INUM\blank{8}}{$\mathcal{P}_{4}$}
+ {Index number of the merge cell associated to each cell of the assembly}
+\IntEnr
+ {MIX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$}
+ {Index numbers of outgoing currents}
+\RealEnr
+ {DVX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$}{}
+ {Weights corresponding to outgoing currents}
+\RealEnr
+ {SUR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{cm}
+ {Interface surfaces corresponding to incoming currents}
+\IntEnr
+ {IGEN\blank{8}}{$\mathcal{P}_{5}$}
+ {Index number of the generating cell associated to each merged cell}
+\end{DescriptionEnregistrement}
+
+\noindent
+with the dimension parameter $\mathcal{P}_{i}$, representing:
+
+\begin{itemize}
+
+\item The type of hexagonal symmetry $\mathcal{P}_{1}$
+\begin{displaymath}
+\mathcal{P}_{1} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Cartesian assembly} \\
+ 1 & \textrm{S30} \\
+ 2 & \textrm{SA60} \\
+ 3 & \textrm{SB60} \\
+ 4 & \textrm{S90} \\
+ 5 & \textrm{R120} \\
+ 6 & \textrm{R180} \\
+ 7 & \textrm{SA180} \\
+ 8 & \textrm{SB180} \\
+ 9 & \textrm{COMPLETE} \\
+\end{array} \right.
+\end{displaymath}
+
+\item The type of multicell approximation $\mathcal{P}_{2}$
+\begin{displaymath}
+\mathcal{P}_{2} = \left\{
+\begin{array}{ll}
+1 & \textrm{Roth approximation}\\
+2 & \textrm{Roth$\times 4$ or Roth$\times 6$ approximation}\\
+3 & \textrm{DP-0 approximation}\\
+4 & \textrm{DP-1 approximation} \end{array} \right.
+\end{displaymath}
+
+\item The type of cylinderization $\mathcal{P}_{3}$
+\begin{displaymath}
+\mathcal{P}_{3} = \left\{
+\begin{array}{ll}
+1 & \textrm{Askew cylinderization}\\
+2 & \textrm{Wigner cylinderization}\\
+3 & \textrm{Sanchez cylinderization} \end{array} \right.
+\end{displaymath}
+
+\item The total number of cells $\mathcal{P}_{4}$
+
+\item The number of merged cells $\mathcal{P}_{5}$
+
+\item The number of generating cells $\mathcal{P}_{6}$
+
+\item The number of distinct interface currents $\mathcal{P}_{7}$
+
+\item The number of angles for 2-D quadrature $\mathcal{P}_{8}$
+
+\item The number of segments for 2-D quadrature $\mathcal{P}_{9}$
+
+\item The number of segments for homogeneous 2-D cells $\mathcal{P}_{10}$
+
+\item The number of segments for 1-D cells $\mathcal{P}_{11}$
+
+\item The track normalization option $\mathcal{P}_{12}$
+\begin{displaymath}
+\mathcal{P}_{12} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Normalize the tracks} \\
+ 1 & \textrm{Do not normalize the tracks} \\
+\end{array} \right.
+\end{displaymath}
+
+\item The type of quadrature in angle and space $\mathcal{P}_{13}$
+\begin{displaymath}
+\mathcal{P}_{13} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{Gauss quadrature} \\
+ 1 & \textrm{Equal weight quadrature} \\
+\end{array} \right.
+\end{displaymath}
+
+\item The number of outgoing interface currents per cell $\mathcal{P}_{14}$
+
+\item The number of integer array elements in the tracking arrays $\mathcal{P}_{15}$
+
+\item The number of real array elements in the tracking arrays $\mathcal{P}_{16}$
+
+\end{itemize}
+
+\eject