From 7dfcc480ba1e19bd3232349fc733caef94034292 Mon Sep 17 00:00:00 2001 From: stainer_t Date: Mon, 8 Sep 2025 13:48:49 +0200 Subject: Initial commit from Polytechnique Montreal --- doc/IGE351/SectDsybil.tex | 335 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 335 insertions(+) create mode 100644 doc/IGE351/SectDsybil.tex (limited to 'doc/IGE351/SectDsybil.tex') diff --git a/doc/IGE351/SectDsybil.tex b/doc/IGE351/SectDsybil.tex new file mode 100644 index 0000000..475cd4c --- /dev/null +++ b/doc/IGE351/SectDsybil.tex @@ -0,0 +1,335 @@ +\subsection{The \moc{sybilt} dependent records and sub-directories on a +\dir{tracking} directory}\label{sect:sybiltrackingdir} + +When the \moc{SYBILT:} operator is used ($\mathsf{CDOOR}$={\tt 'SYBIL'}), the following elements in the vector +$\mathcal{S}^{t}_{i}$ will also be defined. + +\begin{itemize} +\item The main SYBIL model $\mathcal{S}^{t}_{6}$ + +\begin{displaymath} +\mathcal{S}^{t}_{6} = \left\{ +\begin{array}{rl} + 2 & \textrm{Pure geometry} \\ + 3 & \textrm{Do-it-yourself geometry} \\ + 4 & \textrm{2-D assembly geometry} \\ +\end{array} \right. +\end{displaymath} + +\item Minimum space required to store tracks for assembly geometry $\mathcal{S}^{t}_{7}$ + +\item Minimum space required to store interface currents for assembly geometry $\mathcal{S}^{t}_{8}$ + +\item Number of additional unknowns holding the interface currents +$\mathcal{S}^{t}_{9}$. These unknowns are used if and only if a current--based +inner iterative method is set (with option \moc{ARM}). + +\end{itemize} + +The following sub-directories will also be present on the main level of a \dir{tracking} +directory. + +\begin{DescriptionEnregistrement}{The \moc{sybilt} records and sub-directories in +\dir{tracking}}{8.0cm}\label{table:puregeom} +\RealEnr + {EPSJ\blank{8}}{$1$}{$1$} + {Stopping criterion for flux-current iterations of the interface current method} +\OptDirEnr + {PURE-GEOM\blank{3}}{$\mathcal{S}^{t}_{6}=2$} + {Sub-directory containing the data related to a pure geometry} +\OptDirEnr + {DOITYOURSELF}{$\mathcal{S}^{t}_{6}=3$} + {Sub-directory containing the data related to a do-it-yourself geometry} +\OptDirEnr + {EURYDICE\blank{4}}{$\mathcal{S}^{t}_{6}=4$} + {Sub-directory containing the data related to an assembly geometry} +\end{DescriptionEnregistrement} + +\vskip -0.4cm +\noindent +where the sub-directories in Table~\ref{table:puregeom} are described in the following subsections. + +\subsubsection{The \moc{/PURE-GEOM/} sub-directory in \moc{sybilt}}\label{sect:puregeomtrackingdir} + +\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt} +\moc{/PURE-GEOM/} sub-directory}{8.0cm} +\IntEnr + {PARAM\blank{7}}{$6$} + {Record containing the parameters for a SYBIL tracking on a pure geometry $\mathcal{P}_{i}$} +\IntEnr + {NCODE\blank{7}}{$6$} + {Record containing the types of boundary conditions on each surface $N_{\beta,j}$} +\RealEnr + {ZCODE\blank{7}}{$6$}{$1$} + {Record containing the albedo value on each surface} +\OptRealEnr + {XXX\blank{9}}{$\mathcal{P}_{4}+1$}{$\mathcal{P}_{4}\ge 1$}{cm} + {$x-$directed mesh coordinates after mesh-splitting for type + 2, 5 and 7 geometries. Region-ordered radius after mesh-splitting for type 3 and 6 + geometries} +\OptRealEnr + {YYY\blank{9}}{$\mathcal{P}_{5}+1$}{$\mathcal{P}_{5}\ge 1$}{cm} + {$y-$directed mesh coordinates after mesh-splitting for type 5, 6 and 7 geometries} +\OptRealEnr + {ZZZ\blank{9}}{$\mathcal{P}_{6}+1$}{$\mathcal{P}_{6}\ge 1$}{cm} + {$z-$directed mesh coordinates after mesh-splitting for type 7 and 9 geometries} +\OptRealEnr + {SIDE\blank{8}}{$1$}{$\mathcal{P}_{1}\ge 8$}{cm} + {Side of a hexagon for type 8 and 9 geometries} +\end{DescriptionEnregistrement} + +\vskip -0.2cm +\noindent +with the dimension parameter $\mathcal{P}_{i}$, representing: + +\begin{itemize} +\item The type of geometry $\mathcal{P}_{1}$ +\begin{displaymath} +\mathcal{P}_{1} = \left\{ +\begin{array}{rl} + 2 & \textrm{Cartesian 1-D geometry} \\ + 3 & \textrm{Tube 1-D geometry} \\ + 4 & \textrm{Spherical 1-D geometry} \\ + 5 & \textrm{Cartesian 2-D geometry} \\ + 6 & \textrm{Tube 2-D geometry} \\ + 7 & \textrm{Cartesian 3-D geometry} \\ + 8 & \textrm{Hexagonal 2-D geometry} \\ + 9 & \textrm{Hexagonal 3-D geometry} \\ +\end{array} \right. +\end{displaymath} + +\item The type of hexagonal symmetry $\beta_{h}=\mathcal{P}_{2}$ +\begin{displaymath} +\beta_{h} = \left\{ +\begin{array}{rl} + 1 & \textrm{S30} \\ + 2 & \textrm{SA60} \\ + 3 & \textrm{SB60} \\ + 4 & \textrm{S90} \\ + 5 & \textrm{R120} \\ + 6 & \textrm{R180} \\ + 7 & \textrm{SA180} \\ + 8 & \textrm{SB180} \\ + 9 & \textrm{COMPLETE} \\ +\end{array} \right. +\end{displaymath} + +\item The quadrature parameter $\mathcal{P}_{3}$ + +\item The number of $x-$directed or radial mesh intervals in the geometry $\mathcal{P}_{4}$ + +\item The number of $y-$directed mesh intervals in the geometry $\mathcal{P}_{5}$ + +\item The number of $z-$directed mesh intervals in the geometry $\mathcal{P}_{6}$ + +\end{itemize} + +The type of boundary conditions used will be defined in the following way +\begin{displaymath} +N_{\beta,j} = \left\{ +\begin{array}{rl} + 0 & \textrm{Not used} \\ + 1 & \textrm{Void boundary condition} \\ + 2 & \textrm{Reflection boundary condition} \\ + 3 & \textrm{Diagonal reflection boundary condition} \\ + 4 & \textrm{Translation boundary condition condition} \\ + 5 & \textrm{Symmetric reflection boundary condition} \\ + 6 & \textrm{Albedo boundary condition} \\ +\end{array} \right. +\end{displaymath} + +\subsubsection{The \moc{/DOITYOURSELF/} sub-directory in \moc{sybilt}}\label{sect:doittrackingdir} + +\vskip -0.9cm + +\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt} +\moc{/DOITYOURSELF/} sub-directory}{8.0cm} +\IntEnr + {PARAM\blank{7}}{$3$} + {Record containing the parameters for a SYBIL tracking on a do-it-yourself geometry + $\mathcal{P}_{i}$} +\IntEnr + {NMC\blank{9}}{$M+1$} + {Offset of the first region in each cell} +\RealEnr + {RAYRE\blank{7}}{$N_r+M$}{cm} + {Radius of the tubes in each cell} +\RealEnr + {PROCEL\blank{6}}{$M,M$}{} + {Geometric matrix} +\RealEnr + {POURCE\blank{6}}{$M$}{} + {Weight assigned to each cell} +\RealEnr + {SURFA\blank{7}}{$M$}{cm$^{2}$} + {Surface of each cell } +\end{DescriptionEnregistrement} +\noindent +with the dimension parameter $\mathcal{P}_{i}$, representing: + +\begin{itemize} +\item The number of cells $\mathcal{P}_{1}=M$ + +\item The quadrature parameter $\mathcal{P}_{2}$ + +\item The statistical option $\mathcal{P}_{3}$ +\begin{displaymath} +\mathcal{P}_{3} = \left\{ +\begin{array}{rl} + 0 & \textrm{the statistical approximation is not used. Record {\tt 'PROCEL'} is used.} \\ + 1 & \textrm{use the statistical approximation. Record {\tt 'PROCEL'} is not used.} +\end{array} \right. +\end{displaymath} + +\end{itemize} + +\clearpage + +\subsubsection{The \moc{/EURYDICE/} sub-directory in \moc{sybilt}}\label{sect:eurydicetrackingdir} + +\vskip -0.9cm + +\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt} +\moc{/EURYDICE/} sub-directory}{8.0cm} +\IntEnr + {PARAM\blank{7}}{$16$} +{Record containing the parameters for a SYBIL tracking on an assembly geometry + $\mathcal{P}_{i}$} +\RealEnr + {XX\blank{10}}{$\mathcal{P}_{6}$}{cm} + {$x-$thickness of the generating cells} +\RealEnr + {YY\blank{10}}{$\mathcal{P}_{6}$}{cm} + {$y-$thickness of the generating cells} +\IntEnr + {LSECT\blank{7}}{$\mathcal{P}_{6}$} + {Type of sectorization for each each generating cell. Equal to zero for + non-sectorized cells. Allowed values are defined as $F_{\mathrm{sec}}$ in \Sect{geometrydirmain}} +\IntEnr + {NMC\blank{9}}{$\mathcal{P}_{6}+1$} + {Offset of the first region index in each generating cell} +\IntEnr + {NMCR\blank{8}}{$\mathcal{P}_{6}+1$} + {Offset of the first radius index in each generating cell. Equal to + {\tt NMC}, unless the cell is sectorized.} +\RealEnr + {RAYRE\blank{7}}{$M_r$}{cm} + {Radius of the tubes in each generating cell. $M_r=${\tt NMCR(}$\mathcal{P}_{6}+1${\tt )}} +\IntEnr + {MAIL\blank{8}}{$2,\mathcal{P}_{6}$} + {Offsets of the first tracking information in each generating cell. {\tt + MAIL(1,:)} contains offsets for the integer array {\tt ZMAILI}; {\tt + MAIL(2,:)} contains offsets for the real array {\tt ZMAILR}.} +\IntEnr + {ZMAILI\blank{6}}{$\mathcal{P}_{15}$} + {The integer tracking information} +\RealEnr + {ZMAILR\blank{6}}{$\mathcal{P}_{16}$}{cm} + {The tracking lengths} +\IntEnr + {IFR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$} + {Index numbers of incoming currents} +\RealEnr + {ALB\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{} + {Albedo or transmission factors corresponding to incoming currents} +\IntEnr + {INUM\blank{8}}{$\mathcal{P}_{4}$} + {Index number of the merge cell associated to each cell of the assembly} +\IntEnr + {MIX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$} + {Index numbers of outgoing currents} +\RealEnr + {DVX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$}{} + {Weights corresponding to outgoing currents} +\RealEnr + {SUR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{cm} + {Interface surfaces corresponding to incoming currents} +\IntEnr + {IGEN\blank{8}}{$\mathcal{P}_{5}$} + {Index number of the generating cell associated to each merged cell} +\end{DescriptionEnregistrement} + +\noindent +with the dimension parameter $\mathcal{P}_{i}$, representing: + +\begin{itemize} + +\item The type of hexagonal symmetry $\mathcal{P}_{1}$ +\begin{displaymath} +\mathcal{P}_{1} = \left\{ +\begin{array}{rl} + 0 & \textrm{Cartesian assembly} \\ + 1 & \textrm{S30} \\ + 2 & \textrm{SA60} \\ + 3 & \textrm{SB60} \\ + 4 & \textrm{S90} \\ + 5 & \textrm{R120} \\ + 6 & \textrm{R180} \\ + 7 & \textrm{SA180} \\ + 8 & \textrm{SB180} \\ + 9 & \textrm{COMPLETE} \\ +\end{array} \right. +\end{displaymath} + +\item The type of multicell approximation $\mathcal{P}_{2}$ +\begin{displaymath} +\mathcal{P}_{2} = \left\{ +\begin{array}{ll} +1 & \textrm{Roth approximation}\\ +2 & \textrm{Roth$\times 4$ or Roth$\times 6$ approximation}\\ +3 & \textrm{DP-0 approximation}\\ +4 & \textrm{DP-1 approximation} \end{array} \right. +\end{displaymath} + +\item The type of cylinderization $\mathcal{P}_{3}$ +\begin{displaymath} +\mathcal{P}_{3} = \left\{ +\begin{array}{ll} +1 & \textrm{Askew cylinderization}\\ +2 & \textrm{Wigner cylinderization}\\ +3 & \textrm{Sanchez cylinderization} \end{array} \right. +\end{displaymath} + +\item The total number of cells $\mathcal{P}_{4}$ + +\item The number of merged cells $\mathcal{P}_{5}$ + +\item The number of generating cells $\mathcal{P}_{6}$ + +\item The number of distinct interface currents $\mathcal{P}_{7}$ + +\item The number of angles for 2-D quadrature $\mathcal{P}_{8}$ + +\item The number of segments for 2-D quadrature $\mathcal{P}_{9}$ + +\item The number of segments for homogeneous 2-D cells $\mathcal{P}_{10}$ + +\item The number of segments for 1-D cells $\mathcal{P}_{11}$ + +\item The track normalization option $\mathcal{P}_{12}$ +\begin{displaymath} +\mathcal{P}_{12} = \left\{ +\begin{array}{rl} + 0 & \textrm{Normalize the tracks} \\ + 1 & \textrm{Do not normalize the tracks} \\ +\end{array} \right. +\end{displaymath} + +\item The type of quadrature in angle and space $\mathcal{P}_{13}$ +\begin{displaymath} +\mathcal{P}_{13} = \left\{ +\begin{array}{rl} + 0 & \textrm{Gauss quadrature} \\ + 1 & \textrm{Equal weight quadrature} \\ +\end{array} \right. +\end{displaymath} + +\item The number of outgoing interface currents per cell $\mathcal{P}_{14}$ + +\item The number of integer array elements in the tracking arrays $\mathcal{P}_{15}$ + +\item The number of real array elements in the tracking arrays $\mathcal{P}_{16}$ + +\end{itemize} + +\eject -- cgit v1.2.3