summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDkinet.tex
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE351/SectDkinet.tex
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE351/SectDkinet.tex')
-rw-r--r--doc/IGE351/SectDkinet.tex175
1 files changed, 175 insertions, 0 deletions
diff --git a/doc/IGE351/SectDkinet.tex b/doc/IGE351/SectDkinet.tex
new file mode 100644
index 0000000..0ecea7f
--- /dev/null
+++ b/doc/IGE351/SectDkinet.tex
@@ -0,0 +1,175 @@
+\section{Contents of a \dir{kinet} directory}\label{sect:kinetdir}
+
+The {\tt L\_KINET} specification is used to store the data related to the space-time
+neutron kinetics calculations. This directory also contains the main calculations results corresponding
+to the current time step of a transient.
+
+\subsection{State vector content for the \dir{kinet} data structure}\label{sect:kinetstate}
+
+The dimensioning parameters for this data structure, which are stored in the state vector
+$\mathcal{S}^{k}_{i}$, represent:
+
+\begin{itemize}
+
+\item The current time-step index $N_{tr}=\mathcal{S}^{k}_{1}$
+
+\item The number of delayed-neutron precursor groups $N_{dg}=\mathcal{S}^{k}_{2}$
+
+\item The number of energy groups $N_{gr}=\mathcal{S}^{k}_{3}$
+
+\item The type of geometry $I_{geo} = \mathcal{S}^{k}_{4}$
+
+\item The total number of finite elements $N_{el}=\mathcal{S}^{k}_{5}$
+
+\item The total number of unknowns per energy group $N_{un}=\mathcal{S}^{k}_{6}$
+
+\item The number of flux unknowns per energy group $N_{uf}=\mathcal{S}^{k}_{7}$
+
+\item The number of precursors unknowns per delayed group $N_{up}=\mathcal{S}^{k}_{8}$
+
+\item The number of fissile isotopes $N_{fiss}=\mathcal{S}^{k}_{9}$
+
+\item The type of system matrices $N_{sys}=\mathcal{S}^{k}_{10}$
+
+\item Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}^{k}_{11}$
+
+\item Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}^{k}_{12}$
+
+\item Type of normalization for the flux $I_{\rm norm}=\mathcal{S}^{k}_{13}$ where
+\begin{displaymath}
+I_{\rm norm} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{No normalization} \\
+ 1 & \textrm{Imposed factor} \\
+ 2 & \textrm{Maximum flux normalization} \\
+ 3 & \textrm{Initial power normalization}
+\end{array} \right.
+\end{displaymath}
+
+\item Maximum number of thermal (up-scattering) iterations $M_{\rm in}=\mathcal{S}^{k}_{14}$
+
+\item Maximum number of outer iterations $M_{\rm out}=\mathcal{S}^{k}_{15}$
+
+\item Initial number of ADI iterations in Trivac $M_{\rm adi}=\mathcal{S}^{k}_{16}$
+
+\item Temporal integration scheme for fluxes $I_{\rm ifl}=\mathcal{S}^{k}_{17}$ where
+\begin{displaymath}
+I_{\rm ifl} = \left\{
+\begin{array}{rl}
+ 1 & \textrm{Implicit scheme ($\Theta_{\rm f}=1$)} \\
+ 2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm f}=0.5$)} \\
+ 3 & \textrm{General theta method}
+\end{array} \right.
+\end{displaymath}
+
+\item Temporal integration scheme for precursors $I_{\rm ipr}=\mathcal{S}^{k}_{18}$ where
+\begin{displaymath}
+I_{\rm ipr} = \left\{
+\begin{array}{rl}
+ 1 & \textrm{Implicit scheme ($\Theta_{\rm p}=1$)} \\
+ 2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm p}=0.5$)} \\
+ 3 & \textrm{General theta method} \\
+ 4 & \textrm{Analytical integration method for precursors}
+\end{array} \right.
+\end{displaymath}
+
+\item Exponential transformation flag $I_{\rm iexp}=\mathcal{S}^{k}_{19}$ where
+\begin{displaymath}
+I_{\rm iexp} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{not used} \\
+ 1 & \textrm{used}
+\end{array} \right.
+\end{displaymath}
+
+\item Adjoint kinetics calculation flag $I_{\rm adj}=\mathcal{S}^{k}_{20}$ where
+\begin{displaymath}
+I_{\rm adj} = \left\{
+\begin{array}{rl}
+ 0 & \textrm{direct (forward) calculation} \\
+ 1 & \textrm{adjoint (backward) calculation}
+\end{array} \right.
+\end{displaymath}
+
+\end{itemize}
+\goodbreak
+
+\subsection{The main \dir{kinet} directory}\label{sect:kinetdirmain}
+
+The following records and sub-directories will be found in the \dir{kinet} directory:
+
+\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{kinet}}{8.0cm}
+
+\CharEnr
+ {SIGNATURE\blank{3}}{$*12$}
+ {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_KINET\blank{5}})}
+\IntEnr
+ {STATE-VECTOR}{$40$}
+ {Vector describing the various parameters associated with this data structure $\mathcal{S}^{k}_{i}$,
+ as defined in \Sect{kinetstate}.}
+\RealEnr
+ {EPS-CONVERGE}{$4$}{}
+ {Convergence parameters $\Delta_i^\epsilon$}
+\CharEnr
+ {TRACK-TYPE\blank{2}}{$*12$}
+ {Type of tracking considered ($\mathsf{CDOOR}$). Allowed values are:
+ {\tt 'BIVAC'} and {\tt 'TRIVAC'}}
+\IntEnr
+ {E-IDLPC\blank{5}}{$N_{el}$}
+ {Position of averaged precursor concentrations in vector {\tt E-PREC}.}
+\RealEnr
+ {DELTA-T\blank{5}}{$1$}{s}
+ {Current time increment.}
+\RealEnr
+ {TOTAL-TIME\blank{2}}{$1$}{s}
+ {Total elapsed time from the beginning of a transient.}
+\RealEnr
+ {BETA-D\blank{6}}{$N_{dg}$}{}
+ {Delayed-neutron fraction for each delayed-neutron precursor group.}
+\RealEnr
+ {LAMBDA-D\blank{4}}{$N_{dg}$}{s$^{-1}$}
+ {Radioactive decay constants of each delayed-neutron precursor group.}
+\RealEnr
+ {CHI-D\blank{7}}{$N_{dg},N_{gr}$}{}
+ {Multigroup delayed-neutron fission spectrum in each precursor group.}
+\RealEnr
+ {E-VECTOR\blank{4}}{$N_{uf},N_{gr}$}{}
+ {Kinetics solution for fluxes at current time step.}
+\RealEnr
+ {E-PREC\blank{6}}{$N_{up},N_{dg}$}{}
+ {Kinetics solution for precursor concentrations at current time step.}
+\RealEnr
+ {E-KEFF\blank{6}}{$1$}{}
+ {Steady-state value of the initial $k_{\rm eff}$.}
+\RealEnr
+ {CTRL-FLUX\blank{3}}{$1$}{}
+ {Maximum value of flux used for the controlling purpose.}
+\RealEnr
+ {CTRL-PREC\blank{3}}{$N_{up}\times N_{fiss}$}{}
+ {Precursor concentrations at location of maximum flux.}
+\IntEnr
+ {CTRL-IDL\blank{4}}{$1$}
+ {Position of a maximum value within the flux vector.}
+\IntEnr
+ {CTRL-IGR\blank{4}}{$1$}
+ {Energy group number corresponding to a maximum flux value.}
+\OptRealEnr
+ {POWER-INI\blank{3}}{$1$}{$I_{\rm norm}=3$}{MW}
+ {Initial power.}
+\OptRealEnr
+ {E-POW\blank{7}}{$1$}{$I_{\rm norm}=3$}{MW}
+ {Actual power.}
+\OptRealEnr
+ {OMEGA\blank{7}}{$N_{mix},N_{gr}$}{$I_{\rm iexp}=1$}{s$^{-1}$}
+ {Exponential transformation factor. $N_{mix}$ is the number of material mixtures}
+\end{DescriptionEnregistrement}
+
+The convergence parameters $\Delta_i^\epsilon$ represent:
+\begin{itemize}
+\item $\Delta_1^\epsilon$ is the thermal (up-scattering) iteration flux convergence parameter
+\item $\Delta_2^\epsilon$ is the outer iteration flux convergence parameter
+\item $\Theta_{\rm f}$ is the value of theta-parameter for fluxes
+\item $\Theta_{\rm p}$ is the value of theta-parameter for precursors
+\end{itemize}
+
+\eject