From 7dfcc480ba1e19bd3232349fc733caef94034292 Mon Sep 17 00:00:00 2001 From: stainer_t Date: Mon, 8 Sep 2025 13:48:49 +0200 Subject: Initial commit from Polytechnique Montreal --- doc/IGE351/SectDkinet.tex | 175 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 175 insertions(+) create mode 100644 doc/IGE351/SectDkinet.tex (limited to 'doc/IGE351/SectDkinet.tex') diff --git a/doc/IGE351/SectDkinet.tex b/doc/IGE351/SectDkinet.tex new file mode 100644 index 0000000..0ecea7f --- /dev/null +++ b/doc/IGE351/SectDkinet.tex @@ -0,0 +1,175 @@ +\section{Contents of a \dir{kinet} directory}\label{sect:kinetdir} + +The {\tt L\_KINET} specification is used to store the data related to the space-time +neutron kinetics calculations. This directory also contains the main calculations results corresponding +to the current time step of a transient. + +\subsection{State vector content for the \dir{kinet} data structure}\label{sect:kinetstate} + +The dimensioning parameters for this data structure, which are stored in the state vector +$\mathcal{S}^{k}_{i}$, represent: + +\begin{itemize} + +\item The current time-step index $N_{tr}=\mathcal{S}^{k}_{1}$ + +\item The number of delayed-neutron precursor groups $N_{dg}=\mathcal{S}^{k}_{2}$ + +\item The number of energy groups $N_{gr}=\mathcal{S}^{k}_{3}$ + +\item The type of geometry $I_{geo} = \mathcal{S}^{k}_{4}$ + +\item The total number of finite elements $N_{el}=\mathcal{S}^{k}_{5}$ + +\item The total number of unknowns per energy group $N_{un}=\mathcal{S}^{k}_{6}$ + +\item The number of flux unknowns per energy group $N_{uf}=\mathcal{S}^{k}_{7}$ + +\item The number of precursors unknowns per delayed group $N_{up}=\mathcal{S}^{k}_{8}$ + +\item The number of fissile isotopes $N_{fiss}=\mathcal{S}^{k}_{9}$ + +\item The type of system matrices $N_{sys}=\mathcal{S}^{k}_{10}$ + +\item Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}^{k}_{11}$ + +\item Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}^{k}_{12}$ + +\item Type of normalization for the flux $I_{\rm norm}=\mathcal{S}^{k}_{13}$ where +\begin{displaymath} +I_{\rm norm} = \left\{ +\begin{array}{rl} + 0 & \textrm{No normalization} \\ + 1 & \textrm{Imposed factor} \\ + 2 & \textrm{Maximum flux normalization} \\ + 3 & \textrm{Initial power normalization} +\end{array} \right. +\end{displaymath} + +\item Maximum number of thermal (up-scattering) iterations $M_{\rm in}=\mathcal{S}^{k}_{14}$ + +\item Maximum number of outer iterations $M_{\rm out}=\mathcal{S}^{k}_{15}$ + +\item Initial number of ADI iterations in Trivac $M_{\rm adi}=\mathcal{S}^{k}_{16}$ + +\item Temporal integration scheme for fluxes $I_{\rm ifl}=\mathcal{S}^{k}_{17}$ where +\begin{displaymath} +I_{\rm ifl} = \left\{ +\begin{array}{rl} + 1 & \textrm{Implicit scheme ($\Theta_{\rm f}=1$)} \\ + 2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm f}=0.5$)} \\ + 3 & \textrm{General theta method} +\end{array} \right. +\end{displaymath} + +\item Temporal integration scheme for precursors $I_{\rm ipr}=\mathcal{S}^{k}_{18}$ where +\begin{displaymath} +I_{\rm ipr} = \left\{ +\begin{array}{rl} + 1 & \textrm{Implicit scheme ($\Theta_{\rm p}=1$)} \\ + 2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm p}=0.5$)} \\ + 3 & \textrm{General theta method} \\ + 4 & \textrm{Analytical integration method for precursors} +\end{array} \right. +\end{displaymath} + +\item Exponential transformation flag $I_{\rm iexp}=\mathcal{S}^{k}_{19}$ where +\begin{displaymath} +I_{\rm iexp} = \left\{ +\begin{array}{rl} + 0 & \textrm{not used} \\ + 1 & \textrm{used} +\end{array} \right. +\end{displaymath} + +\item Adjoint kinetics calculation flag $I_{\rm adj}=\mathcal{S}^{k}_{20}$ where +\begin{displaymath} +I_{\rm adj} = \left\{ +\begin{array}{rl} + 0 & \textrm{direct (forward) calculation} \\ + 1 & \textrm{adjoint (backward) calculation} +\end{array} \right. +\end{displaymath} + +\end{itemize} +\goodbreak + +\subsection{The main \dir{kinet} directory}\label{sect:kinetdirmain} + +The following records and sub-directories will be found in the \dir{kinet} directory: + +\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{kinet}}{8.0cm} + +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_KINET\blank{5}})} +\IntEnr + {STATE-VECTOR}{$40$} + {Vector describing the various parameters associated with this data structure $\mathcal{S}^{k}_{i}$, + as defined in \Sect{kinetstate}.} +\RealEnr + {EPS-CONVERGE}{$4$}{} + {Convergence parameters $\Delta_i^\epsilon$} +\CharEnr + {TRACK-TYPE\blank{2}}{$*12$} + {Type of tracking considered ($\mathsf{CDOOR}$). Allowed values are: + {\tt 'BIVAC'} and {\tt 'TRIVAC'}} +\IntEnr + {E-IDLPC\blank{5}}{$N_{el}$} + {Position of averaged precursor concentrations in vector {\tt E-PREC}.} +\RealEnr + {DELTA-T\blank{5}}{$1$}{s} + {Current time increment.} +\RealEnr + {TOTAL-TIME\blank{2}}{$1$}{s} + {Total elapsed time from the beginning of a transient.} +\RealEnr + {BETA-D\blank{6}}{$N_{dg}$}{} + {Delayed-neutron fraction for each delayed-neutron precursor group.} +\RealEnr + {LAMBDA-D\blank{4}}{$N_{dg}$}{s$^{-1}$} + {Radioactive decay constants of each delayed-neutron precursor group.} +\RealEnr + {CHI-D\blank{7}}{$N_{dg},N_{gr}$}{} + {Multigroup delayed-neutron fission spectrum in each precursor group.} +\RealEnr + {E-VECTOR\blank{4}}{$N_{uf},N_{gr}$}{} + {Kinetics solution for fluxes at current time step.} +\RealEnr + {E-PREC\blank{6}}{$N_{up},N_{dg}$}{} + {Kinetics solution for precursor concentrations at current time step.} +\RealEnr + {E-KEFF\blank{6}}{$1$}{} + {Steady-state value of the initial $k_{\rm eff}$.} +\RealEnr + {CTRL-FLUX\blank{3}}{$1$}{} + {Maximum value of flux used for the controlling purpose.} +\RealEnr + {CTRL-PREC\blank{3}}{$N_{up}\times N_{fiss}$}{} + {Precursor concentrations at location of maximum flux.} +\IntEnr + {CTRL-IDL\blank{4}}{$1$} + {Position of a maximum value within the flux vector.} +\IntEnr + {CTRL-IGR\blank{4}}{$1$} + {Energy group number corresponding to a maximum flux value.} +\OptRealEnr + {POWER-INI\blank{3}}{$1$}{$I_{\rm norm}=3$}{MW} + {Initial power.} +\OptRealEnr + {E-POW\blank{7}}{$1$}{$I_{\rm norm}=3$}{MW} + {Actual power.} +\OptRealEnr + {OMEGA\blank{7}}{$N_{mix},N_{gr}$}{$I_{\rm iexp}=1$}{s$^{-1}$} + {Exponential transformation factor. $N_{mix}$ is the number of material mixtures} +\end{DescriptionEnregistrement} + +The convergence parameters $\Delta_i^\epsilon$ represent: +\begin{itemize} +\item $\Delta_1^\epsilon$ is the thermal (up-scattering) iteration flux convergence parameter +\item $\Delta_2^\epsilon$ is the outer iteration flux convergence parameter +\item $\Theta_{\rm f}$ is the value of theta-parameter for fluxes +\item $\Theta_{\rm p}$ is the value of theta-parameter for precursors +\end{itemize} + +\eject -- cgit v1.2.3