summaryrefslogtreecommitdiff
path: root/doc/IGE335/Section5.02.tex
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE335/Section5.02.tex
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE335/Section5.02.tex')
-rw-r--r--doc/IGE335/Section5.02.tex233
1 files changed, 233 insertions, 0 deletions
diff --git a/doc/IGE335/Section5.02.tex b/doc/IGE335/Section5.02.tex
new file mode 100644
index 0000000..c705607
--- /dev/null
+++ b/doc/IGE335/Section5.02.tex
@@ -0,0 +1,233 @@
+\subsection{Geometries}\label{sect:ExGEOData}
+
+In order to illustrate the use of the various geometries presented in
+\Sect{GEOData}, lets us consider a few examples that can be treated
+by DRAGON.
+
+\begin{itemize}
+
+\item 1--D Slab geometry (see \Fig{plaque}):
+
+\begin{figure}[h!]
+\begin{center}
+\epsfxsize=11cm \centerline{ \epsffile{Gplaque.eps}}
+\parbox{14cm}{\caption{Slab geometry with mesh-splitting}
+\label{fig:plaque}}
+\end{center}
+\end{figure}
+
+This geometry can be analyzed using a \moc{SYBILT:} tracking
+modules:
+
+\begin{verbatim}
+PLATE := GEO: :: CAR1D 6
+ X- VOID X+ ALBE 1.2
+ MESHX 0.0 0.1 0.3 0.5 0.6 0.8 1.0
+ SPLITX 2 2 2 1 2 1
+ MIX 1 2 3 4 5 6 ;
+\end{verbatim}
+
+\item 2--D Cartesian geometry containing micro-structures (see
+figure \Fig{grains}):
+
+\begin{figure}[h!]
+\begin{center}
+\epsfxsize=10cm \centerline{ \epsffile{Ggrains.eps}}
+\parbox{14cm}{\caption{Two-dimensional Cartesian assembly containing
+micro-structures} \label{fig:grains}}
+\end{center}
+\end{figure}
+
+This geometry can be analyzed only using \moc{SYBILT:}
+tracking modules:
+
+\begin{verbatim}
+CARNSG := GEO: :: CAR2D 3 3
+ X- DIAG X+ REFL Y- SYME Y+ DIAG
+ MIX C1 C1 C2
+ C3 C2
+ C3
+ BIHET SPHE (*NG=*) 2 (* NMILG= *) 2 (* SPHERICAL MICRO-STRUCTURE *)
+ (* NS= *) 3 3
+ (* M-S-1 *) 0.0 0.1 0.2 0.3 (* M-S 2 *) 0.0 0.2 0.4 0.5
+ (* COMPOSITE MIXTURES *) 4 5
+ (* MIXTURES SURROUNDING M-S *) 1 1
+ (* COMPOSITE MIXTURE 4 FRACT *) 0.4 0.0
+ (* REAL MIXTURE CONTENT M-S-1 *) 3 1 3
+ (* COMPOSITE MIXTURE 5 FRACT *) 0.2 0.1
+ (* REAL MIXTURE CONTENT M-S-1 *) 1 2 1
+ (* REAL MIXTURE CONTENT M-S-2 *) 2 3 1
+ ::: C1 := GEO: CAR2D 1 1 (* HOMOGENEOUS CELL WITH M-S *)
+ MESHX 0.0 1.45 MESHY 0.0 1.45 MIX 4 ;
+ ::: C2 := GEO: C1 (* HOMOGENEOUS CELL WITHOUT M-S *)
+ MIX 1 ;
+ ::: C3 := GEO: CARCEL 2 (* CELL WITH M-S TUBE *)
+ MESHX 0.0 1.45 MESHY 0.0 1.45
+ RADIUS 0.0 0.6 0.7
+ MIX 5 2 1 ;
+;
+\end{verbatim}
+
+
+\item Cylindrical and Cartesian cluster geometry (see \Fig{grappe}):
+
+\begin{figure}[h!]
+\begin{center}
+\epsfxsize=10cm \centerline{ \epsffile{Ggrappe.eps}}
+\parbox{14cm}{\caption{Cylindrical cluster geometry}\label{fig:grappe}}
+\end{center}
+\end{figure}
+
+The first two geometry, namely {\tt ANNPIN} and {\tt CARPIN} can be analyzed
+using a \moc{EXCELT:} tracking modules since the pins in
+the clusters are all located between annular region. For the last two geometries,
+{\tt ANNSPIN} and {\tt CARSPIN}, which are based on {\tt ANNPIN} and {\tt
+CARPIN} respectively, they only be treated by the
+\moc{EXCELT:} tracking modules since the pins in the clusters intersect the
+annular regions defined by the \moc{SPLITR} option. This later option which was
+selected to ensure a uniform thickness of 0.25 cm for each the annular region in
+the final geometries.
+
+\begin{verbatim}
+ANNPIN := GEO: :: TUBE 3
+ R+ REFL RADIUS 0.0 0.75 2.75 4.75
+ MIX 2 1 3
+ CLUSTER C1 C2
+ ::: C1 := GEO: TUBE 2
+ MIX 2 4 RADIUS 0.0 0.3 0.6
+ NPIN 4 RPIN 1.75 APIN 0.523599 ;
+ ::: C2 := GEO: C1
+ NPIN 2 RPIN 3.75 APIN 1.570796 ;
+;
+CARPIN := GEO: :: CARCEL 3
+ X- REFL X+ REFL Y- REFL Y+ REFL
+ MESHX 0.0 10.0 MESHY -5.0 5.0
+ RADIUS 0.0 0.75 2.75 4.75
+ MIX 2 1 3 3
+ CLUSTER C1 C2
+ ::: C1 := GEO: TUBE 2
+ MIX 2 4 RADIUS 0.0 0.3 0.6
+ NPIN 4 RPIN 1.75 APIN 0.523599 ;
+ ::: C2 := GEO: C1
+ NPIN 2 RPIN 3.75 APIN 1.570796 ;
+;
+ANNSPIN := GEO: ANNPIN ::
+ SPLITR 3 8 8 ;
+CARSPIN := GEO: CARPIN ::
+ SPLITR 3 8 8 ;
+\end{verbatim}
+
+Note that even if \moc{MESHX} and \moc{MESHY} differ in {\tt CARPIN}, the
+annular regions and pins will still be localized with respect to the center of
+the cell located at $(x,y)=(5.0,0.0)$ cm.
+
+
+\item 2--D hexagonal geometry (see \Fig{hexcel}):
+
+\begin{figure}[h!]
+\begin{center}
+\epsfxsize=10cm \centerline{ \epsffile{Ghexcel.eps}}
+\parbox{14cm}{\caption{Two-dimensional hexagonal geometry}
+\label{fig:hexcel}}
+\end{center}
+\end{figure}
+
+This geometry can be analyzed using the \moc{SYBILT:} and
+\moc{EXCELT:} tracking modules:
+
+\begin{verbatim}
+HEXAGON := GEO: :: HEX 12
+ HBC S30 ALBE 1.6
+ SIDE 1.3
+ MIX 1 1 1 2 2 2 3 3 3 4 5 6
+;
+\end{verbatim}
+
+\item 3--D Cartesian supercell (see \Fig{supercel}):
+
+\begin{figure}[h!]
+\begin{center}
+\epsfxsize=10cm \centerline{ \epsffile{Gsupercel.eps}}
+\parbox{14cm}{\caption{Three-dimensional Cartesian
+super-cell}\label{fig:supercel}} \end{center}
+\end{figure}
+
+This geometry can only be analyzed using the
+\moc{EXCELT:} tracking modules:
+
+\begin{verbatim}
+SUPERCELL := GEO: :: CAR3D 4 4 3
+ X- REFL X+ REFL
+ Y- REFL Y+ REFL
+ Z- REFL Z+ REFL
+ MIX A1 C1 D1 A3 A2 C2 D2 D2 A2 C2 C2 C2 A2 C2 C2 C2
+ C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4
+ C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4
+ ::: C1 := GEO: CAR3D 1 1 1
+ MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0
+ MIX 1 ;
+ ::: C2 := GEO: C1 MESHY 0.0 1.0 ;
+ ::: C3 := GEO: C1 MESHZ 0.0 1.0 ;
+ ::: C4 := GEO: C2 MESHZ 0.0 1.0 ;
+ ::: D1 := GEO: C1 MIX 2 ;
+ ::: D2 := GEO: C2 MIX 2 ;
+ ::: D3 := GEO: C3 MIX 2 ;
+ ::: D4 := GEO: C4 MIX 2 ;
+ ::: A1 := GEO: CARCELY 2 1
+ MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0
+ RADIUS 0.0 0.4 0.45
+ MIX 3 4 1 ;
+ ::: A2 := GEO: A1 MESHY 0.0 1.0 ;
+ ::: A3 := GEO: CARCELZ 2 1
+ MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0
+ RADIUS 0.0 0.3 0.35
+ MIX 5 6 1 ;
+ ::: A4 := GEO: A3 MESHZ 0.0 1.0 ;
+;
+\end{verbatim}
+
+
+\item Multicell geometry in a 2--D hexagonal lattice (see \Fig{multihex}).
+
+\begin{figure}[h!]
+\begin{center}
+\epsfxsize=14cm \centerline{ \epsffile{Gmultihex.eps}}
+\parbox{14cm}{\caption{Hexagonal multicell lattice geometry}
+\label{fig:multihex}}
+\end{center}
+\end{figure}
+
+Here we are considering an infinite lattice having two types of cells such
+that
+
+\begin{align*}
+\begin{pmatrix}\text{pource}(1) \\ \text{pource}(2) \end{pmatrix}&=
+\begin{pmatrix}1/3 \\ 2/3 \\ \end{pmatrix}\ \ \ \ \text{ and} \ \ \ \
+\begin{pmatrix} \text{procel}(1,1) & \text{procel}(1,2) \\ \text{procel}(2,1) & \text{procel}(2,2) \\ \end{pmatrix}=
+\begin{pmatrix}0 & 1 \\ 1/2 & 1/2 \\ \end{pmatrix}
+\end{align*}
+
+This lattice, can be represented either in a {\sl do-it-yourself} type geometry
+({\tt HEXDIY}) or directly ({\tt HEXDIR}):
+
+\begin{verbatim}
+HEXDIY := GEO: :: GROUP 2
+ POURCE 0.3333333 0.66666667
+ PROCEL 0.0 1.0
+ 0.5 0.5
+ MIX C1 C2
+ ::: C1 := GEO: TUBE 1
+ RADIUS 0.0 1.1822093 MIX 1 ;
+ ::: C2 := GEO: C1 MIX 2 ;
+;
+HEXDIR := GEO: :: HEX 2
+ HBC S30 SYME SIDE 1.3 MIX 1 2 ;
+\end{verbatim}
+
+The first lattice can only be analyzed using the \moc{SYBILT:} tracking module,
+while the second lattice can be analyzed using all the tracking
+modules of DRAGON.
+
+\end{itemize}
+
+\eject