From 7dfcc480ba1e19bd3232349fc733caef94034292 Mon Sep 17 00:00:00 2001 From: stainer_t Date: Mon, 8 Sep 2025 13:48:49 +0200 Subject: Initial commit from Polytechnique Montreal --- doc/IGE335/Section5.02.tex | 233 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 233 insertions(+) create mode 100644 doc/IGE335/Section5.02.tex (limited to 'doc/IGE335/Section5.02.tex') diff --git a/doc/IGE335/Section5.02.tex b/doc/IGE335/Section5.02.tex new file mode 100644 index 0000000..c705607 --- /dev/null +++ b/doc/IGE335/Section5.02.tex @@ -0,0 +1,233 @@ +\subsection{Geometries}\label{sect:ExGEOData} + +In order to illustrate the use of the various geometries presented in +\Sect{GEOData}, lets us consider a few examples that can be treated +by DRAGON. + +\begin{itemize} + +\item 1--D Slab geometry (see \Fig{plaque}): + +\begin{figure}[h!] +\begin{center} +\epsfxsize=11cm \centerline{ \epsffile{Gplaque.eps}} +\parbox{14cm}{\caption{Slab geometry with mesh-splitting} +\label{fig:plaque}} +\end{center} +\end{figure} + +This geometry can be analyzed using a \moc{SYBILT:} tracking +modules: + +\begin{verbatim} +PLATE := GEO: :: CAR1D 6 + X- VOID X+ ALBE 1.2 + MESHX 0.0 0.1 0.3 0.5 0.6 0.8 1.0 + SPLITX 2 2 2 1 2 1 + MIX 1 2 3 4 5 6 ; +\end{verbatim} + +\item 2--D Cartesian geometry containing micro-structures (see +figure \Fig{grains}): + +\begin{figure}[h!] +\begin{center} +\epsfxsize=10cm \centerline{ \epsffile{Ggrains.eps}} +\parbox{14cm}{\caption{Two-dimensional Cartesian assembly containing +micro-structures} \label{fig:grains}} +\end{center} +\end{figure} + +This geometry can be analyzed only using \moc{SYBILT:} +tracking modules: + +\begin{verbatim} +CARNSG := GEO: :: CAR2D 3 3 + X- DIAG X+ REFL Y- SYME Y+ DIAG + MIX C1 C1 C2 + C3 C2 + C3 + BIHET SPHE (*NG=*) 2 (* NMILG= *) 2 (* SPHERICAL MICRO-STRUCTURE *) + (* NS= *) 3 3 + (* M-S-1 *) 0.0 0.1 0.2 0.3 (* M-S 2 *) 0.0 0.2 0.4 0.5 + (* COMPOSITE MIXTURES *) 4 5 + (* MIXTURES SURROUNDING M-S *) 1 1 + (* COMPOSITE MIXTURE 4 FRACT *) 0.4 0.0 + (* REAL MIXTURE CONTENT M-S-1 *) 3 1 3 + (* COMPOSITE MIXTURE 5 FRACT *) 0.2 0.1 + (* REAL MIXTURE CONTENT M-S-1 *) 1 2 1 + (* REAL MIXTURE CONTENT M-S-2 *) 2 3 1 + ::: C1 := GEO: CAR2D 1 1 (* HOMOGENEOUS CELL WITH M-S *) + MESHX 0.0 1.45 MESHY 0.0 1.45 MIX 4 ; + ::: C2 := GEO: C1 (* HOMOGENEOUS CELL WITHOUT M-S *) + MIX 1 ; + ::: C3 := GEO: CARCEL 2 (* CELL WITH M-S TUBE *) + MESHX 0.0 1.45 MESHY 0.0 1.45 + RADIUS 0.0 0.6 0.7 + MIX 5 2 1 ; +; +\end{verbatim} + + +\item Cylindrical and Cartesian cluster geometry (see \Fig{grappe}): + +\begin{figure}[h!] +\begin{center} +\epsfxsize=10cm \centerline{ \epsffile{Ggrappe.eps}} +\parbox{14cm}{\caption{Cylindrical cluster geometry}\label{fig:grappe}} +\end{center} +\end{figure} + +The first two geometry, namely {\tt ANNPIN} and {\tt CARPIN} can be analyzed +using a \moc{EXCELT:} tracking modules since the pins in +the clusters are all located between annular region. For the last two geometries, +{\tt ANNSPIN} and {\tt CARSPIN}, which are based on {\tt ANNPIN} and {\tt +CARPIN} respectively, they only be treated by the +\moc{EXCELT:} tracking modules since the pins in the clusters intersect the +annular regions defined by the \moc{SPLITR} option. This later option which was +selected to ensure a uniform thickness of 0.25 cm for each the annular region in +the final geometries. + +\begin{verbatim} +ANNPIN := GEO: :: TUBE 3 + R+ REFL RADIUS 0.0 0.75 2.75 4.75 + MIX 2 1 3 + CLUSTER C1 C2 + ::: C1 := GEO: TUBE 2 + MIX 2 4 RADIUS 0.0 0.3 0.6 + NPIN 4 RPIN 1.75 APIN 0.523599 ; + ::: C2 := GEO: C1 + NPIN 2 RPIN 3.75 APIN 1.570796 ; +; +CARPIN := GEO: :: CARCEL 3 + X- REFL X+ REFL Y- REFL Y+ REFL + MESHX 0.0 10.0 MESHY -5.0 5.0 + RADIUS 0.0 0.75 2.75 4.75 + MIX 2 1 3 3 + CLUSTER C1 C2 + ::: C1 := GEO: TUBE 2 + MIX 2 4 RADIUS 0.0 0.3 0.6 + NPIN 4 RPIN 1.75 APIN 0.523599 ; + ::: C2 := GEO: C1 + NPIN 2 RPIN 3.75 APIN 1.570796 ; +; +ANNSPIN := GEO: ANNPIN :: + SPLITR 3 8 8 ; +CARSPIN := GEO: CARPIN :: + SPLITR 3 8 8 ; +\end{verbatim} + +Note that even if \moc{MESHX} and \moc{MESHY} differ in {\tt CARPIN}, the +annular regions and pins will still be localized with respect to the center of +the cell located at $(x,y)=(5.0,0.0)$ cm. + + +\item 2--D hexagonal geometry (see \Fig{hexcel}): + +\begin{figure}[h!] +\begin{center} +\epsfxsize=10cm \centerline{ \epsffile{Ghexcel.eps}} +\parbox{14cm}{\caption{Two-dimensional hexagonal geometry} +\label{fig:hexcel}} +\end{center} +\end{figure} + +This geometry can be analyzed using the \moc{SYBILT:} and +\moc{EXCELT:} tracking modules: + +\begin{verbatim} +HEXAGON := GEO: :: HEX 12 + HBC S30 ALBE 1.6 + SIDE 1.3 + MIX 1 1 1 2 2 2 3 3 3 4 5 6 +; +\end{verbatim} + +\item 3--D Cartesian supercell (see \Fig{supercel}): + +\begin{figure}[h!] +\begin{center} +\epsfxsize=10cm \centerline{ \epsffile{Gsupercel.eps}} +\parbox{14cm}{\caption{Three-dimensional Cartesian +super-cell}\label{fig:supercel}} \end{center} +\end{figure} + +This geometry can only be analyzed using the +\moc{EXCELT:} tracking modules: + +\begin{verbatim} +SUPERCELL := GEO: :: CAR3D 4 4 3 + X- REFL X+ REFL + Y- REFL Y+ REFL + Z- REFL Z+ REFL + MIX A1 C1 D1 A3 A2 C2 D2 D2 A2 C2 C2 C2 A2 C2 C2 C2 + C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4 + C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4 + ::: C1 := GEO: CAR3D 1 1 1 + MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0 + MIX 1 ; + ::: C2 := GEO: C1 MESHY 0.0 1.0 ; + ::: C3 := GEO: C1 MESHZ 0.0 1.0 ; + ::: C4 := GEO: C2 MESHZ 0.0 1.0 ; + ::: D1 := GEO: C1 MIX 2 ; + ::: D2 := GEO: C2 MIX 2 ; + ::: D3 := GEO: C3 MIX 2 ; + ::: D4 := GEO: C4 MIX 2 ; + ::: A1 := GEO: CARCELY 2 1 + MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0 + RADIUS 0.0 0.4 0.45 + MIX 3 4 1 ; + ::: A2 := GEO: A1 MESHY 0.0 1.0 ; + ::: A3 := GEO: CARCELZ 2 1 + MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0 + RADIUS 0.0 0.3 0.35 + MIX 5 6 1 ; + ::: A4 := GEO: A3 MESHZ 0.0 1.0 ; +; +\end{verbatim} + + +\item Multicell geometry in a 2--D hexagonal lattice (see \Fig{multihex}). + +\begin{figure}[h!] +\begin{center} +\epsfxsize=14cm \centerline{ \epsffile{Gmultihex.eps}} +\parbox{14cm}{\caption{Hexagonal multicell lattice geometry} +\label{fig:multihex}} +\end{center} +\end{figure} + +Here we are considering an infinite lattice having two types of cells such +that + +\begin{align*} +\begin{pmatrix}\text{pource}(1) \\ \text{pource}(2) \end{pmatrix}&= +\begin{pmatrix}1/3 \\ 2/3 \\ \end{pmatrix}\ \ \ \ \text{ and} \ \ \ \ +\begin{pmatrix} \text{procel}(1,1) & \text{procel}(1,2) \\ \text{procel}(2,1) & \text{procel}(2,2) \\ \end{pmatrix}= +\begin{pmatrix}0 & 1 \\ 1/2 & 1/2 \\ \end{pmatrix} +\end{align*} + +This lattice, can be represented either in a {\sl do-it-yourself} type geometry +({\tt HEXDIY}) or directly ({\tt HEXDIR}): + +\begin{verbatim} +HEXDIY := GEO: :: GROUP 2 + POURCE 0.3333333 0.66666667 + PROCEL 0.0 1.0 + 0.5 0.5 + MIX C1 C2 + ::: C1 := GEO: TUBE 1 + RADIUS 0.0 1.1822093 MIX 1 ; + ::: C2 := GEO: C1 MIX 2 ; +; +HEXDIR := GEO: :: HEX 2 + HBC S30 SYME SIDE 1.3 MIX 1 2 ; +\end{verbatim} + +The first lattice can only be analyzed using the \moc{SYBILT:} tracking module, +while the second lattice can be analyzed using all the tracking +modules of DRAGON. + +\end{itemize} + +\eject -- cgit v1.2.3