summaryrefslogtreecommitdiff
path: root/doc/IGE369/Section1.tex
blob: cc0c4069091662c113551bf85e5016fcd420f8ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
\section{INPUT DATA SPECIFICATIONS}

\subsection{Syntactic rules for input data specifications}

The input data to any module is read in free format using the subroutine {\tt REDGET}. The rules for specifying the input data are therefore given in this section. The users guide was written using the following conventions:

\begin{itemize}

\item	the parameters surrounded by single square brackets `$[\;]$' denote an optional input;

\item	the parameters surrounded by double square brackets `$[[\;]]$' denote an optional input which may be repeated as many times as desired;

\item	the parameters in braces separated by vertical bars `$\{\; |\; |\; \}$' denote a choice of input where (one and {\sl only} one is mandatory);

\item	the parameters in {\bf{bold face}} and in brackets `( )' denote an input structure;

\item	the parameters in italics and in brackets with an index `({\it data}(i), i=1,n)' denote a set of n inputs;

\item	the words using the typewriter font are character constants {\tt keywordS} used as keywords;

\item	the words in italics are user defined variables, they should be lower case and are of type integer (starting with {\it i} to {\it n}) and real (starting with {\it a} to {\it h} or {\it o} to {\it z})
or of type character in uppercase {\it CHARACTER}.

\end{itemize}

\subsection{The global input structure}

TRIVAC is built around the Ganlib kernel and its modules can be called from CLE-2000.\cite{ganlib5,cle2000} Input data must therefore follow the calling specifications given below:

\begin{DataStructure}{Structure \dstr{TRIVAC}}
$[$ \moc{LINKED\_LIST} $[[$ \dusa{NAME1} $]]$ \moc{;} $]$ \\
$[$ \moc{XSM\_FILE} $[[$ \dusa{NAME2} $]]$ \moc{;} $]$ \\
$[$ \moc{SEQ\_BINARY} $[[$ \dusa{NAME3} $]]$ \moc{;} $]$ \\
$[$ \moc{SEQ\_ASCII} $[[$ \dusa{NAME4} $]]$ \moc{;} $]$ \\
$[$ \moc{MODULE} $[[$ \dusa{NAME5} $]]$ \moc{;} $]$ \\
$[[$ \dstr{specif} $]]$ \\
\moc{END: ;}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{NAME1}] {\tt Character*12} name of a {\sc lcm} object.

\item[\dusa{NAME2}] {\tt Character*12} name of an {\sc xsm} file.

\item[\dusa{NAME3}] {\tt Character*12} name of a sequential binary file.

\item[\dusa{NAME4}] {\tt Character*12} name of a sequential {\sc ascii} file.

\item[\dusa{NAME5}] {\tt Character*12} name of a module.

\item[\dstr{specif}] Input specifications for a single module. Specifications for TRIVAC modules will be given in the following sections.

\end{ListeDeDescription}

The input data always begins with the declaration of each {\sc lcm} object, {\sc xsm}
file, sequential (binary or {\sc ascii}) file that will be required
by the following modules. This is followed by the declaration of the modules actually used in the input data deck. The following data describes a sequence of module calls, in the format of the GAN generalized driver. As indicated in Fig.~\fig(trivac3), the modules communicate with each other through {\sc lcm} objects or {\sc xsm} files whose specifications are given in section 2. The TRIVAC user generally has the choice to declare its data structures as {\tt LINKED\_LIST} to reduce CPU time resources or as {\tt XSM\_FILE} to reduce CPU memory resources.

\vskip 0.2cm

The input data always ends with a call to the {\tt END:} module.

\begin{figure}[htbp]
\begin{center} 
\epsfxsize=16cm
\centerline{ \epsffile{trivac3.eps}}
\parbox{14cm}{\caption{The TRIVAC modular approach.}
\label{fig:trivac3}} 
\end{center} 
\end{figure}

\subsection{The {\tt GEO:} module}

The {\tt GEO:} module is used to create or modify a geometry. The geometry definition module in TRIVAC permits all the characteristics (coordinates, material mixture type indices and boundary conditions) of a simple or complex geometry to be specified. The method used to specify the geometry is independent of the discretization module to be used subsequently. Each geometry is represented by a name ({\tt character*12}) and is saved in a {\sc lcm} object or an {\sc xsm} file under its given name. It is always possible to modify a given existing geometry or copy it into a neighbouring {\sc lcm} object under a new name. The calling specifications are:

\begin{DataStructure}{Structure \dstr{GEO:}}
$\{$ \dusa{GEOM1} \moc{:=} \moc{GEO: ::} \dstr{geo\_data1} $|$ \\
\dusa{GEOM1} \moc{:=} \moc{GEO:} $\{$ \dusa{GEOM1} $|$ \dusa{GEOM2} $\}$ \moc{::} \dstr{geo\_data2} $\}$
\end{DataStructure}

\noindent

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{GEOM1}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_GEOM}) that will contain the geometry.

\item[\dusa{GEOM2}] {\tt character*12} name of a {\sc lcm} object (type {\tt L\_GEOM}) containing the existing geometry. The type and all the characteristics of \dusa{GEOM2} will be copied onto \dusa{GEOM1}.

\item[\dstr{geo\_data1}] structure describing the characteristics of a new geometry (see Sect.~\ref{sect:geo_data1}).

\item[\dstr{geo\_data2}] structure describing the change to the characteristics of an existing geometry (see Sect.~\ref{sect:geo_data1}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt GEO:}}\label{sect:geo_data1}

Structures \dstr{geo\_data1} and \dstr{geo\_data2} serve to define the
principle components of a geometry (dimensions, materials, boundary
conditions):

\begin{DataStructure}{Structure \dstr{geo\_data1}}
$\{$ \moc{HOMOGE} $|$ \moc{CAR1D} \dusa{lx} $|$ \moc{TUBE} \dusa{lr} $|$ 
\moc{SPHERE} \dusa{lr} $|$ \moc{CAR2D} \dusa{lx} \dusa{ly} $|$ \moc{TUBEZ} \dusa{lr} \dusa{lz} $|$ \moc{CAR3D} \dusa{lx} \dusa{ly} \dusa{lz} $|$ \\
~~~~~~ \moc{HEX} \dusa{lh} $|$ \moc{HEXZ} \dusa{lh} \dusa{lz} $\}$ \\
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
\dstr{descBC} \\
\dstr{descMC} \\
\dstr{descPOS} \\
;
\end{DataStructure}

\begin{DataStructure}{Structure \dstr{geo\_data2}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
\dstr{descBC} \\
\dstr{descMC} \\
\dstr{descPOS} \\
;
\end{DataStructure}

\noindent

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{HOMOGE}] infinite homogeneous geometry.

\item[\moc{CAR1D}] one dimensional plane geometry (infinite slabs).

\item[\moc{TUBE}] cylindrical geometry (infinite tubes or cylinders).

\item[\moc{SPHERE}] spherical geometry (concentric spheres).

\item[\moc{CAR2D}] two-dimensional cartesian geometry.

\item[\moc{TUBEZ}] polar geometry ($R-Z$).

\item[\moc{CAR3D}] three-dimensional cartesian geometry.

\item[\moc{HEX}] two-dimensional hexagonal geometry.

\item[\moc{HEXZ}] three-dimensional hexagonal geometry.

\item[\dusa{lx}] number of subdivisions along the $X$ axis (before mesh-splitting).

\item[\dusa{ly}] number of subdivisions along the $Y$ axis (before mesh-splitting).

\item[\dusa{lz}] number of subdivisions along the $Z$ axis (before
mesh-splitting).

\item[\dusa{lr}] number of cylinders or spherical shells (before mesh-splitting).

\item[\dusa{lh}] number of hexagons in an axial plane (including the virtual hexagons).

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing in module {\tt GEO:}. =0 for no print; =1 for minimum printing (default value); =2 for printing the geometry state vector.

\item[\dstr{descBC}] structure allowing the boundary conditions surrounding the geometry to be treated.

\item[\dstr{descMC}] structure allowing material mixtures to be associated with a geometry.

\item[\dstr{descPOS}] structure allowing the coordinates of a geometry to be described.

\end{ListeDeDescription}

The inputs corresponding to the \dstr{descBC} structure are the following:

\begin{DataStructure}{Structure \dstr{descBC}}
$[$ \moc{X-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$  $\}$ $]$ \\
$[$ \moc{X+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$  $\}$ $]$ \\
$[$ \moc{Y-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$  $\}$ $]$ \\
$[$ \moc{Y+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$  $\}$ $]$ \\
$[$ \moc{Z-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{Z+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{R+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ 
\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $|$ $\}$ $]$ \\
$[$ \moc{HBC} $\{$ \moc{S30} $|$ \moc{SA60} $|$ \moc{SB60} $|$ \moc{S90} $|$
\moc{R120} $|$ \moc{R180} $|$ \moc{SA180} $|$ \moc{SB180} $|$ 
\moc{COMPLETE} $\}$ \\ $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SYME} $|$ 
\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{RADS} $[$ \moc{ANG} $]$ \dusa{nrads} (\dusa{xrad}(ir), \dusa{rrad}(ir) $[$, \dusa{ang}(ir) $]$, ir=1,nrads ) $]$
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{X-}] negative $X$ side.

\item[\moc{Y-}] negative $Y$ side.

\item[\moc{Z-}] negative $Z$ side.	

\item[\moc{X+}] positive $X$ side.

\item[\moc{Y+}] positive $Y$ side.

\item[\moc{Z+}] positive $Z$ side.

\item[\moc{R+}] side surrounding cylinders or spheres.

\item[\moc{HBC}] side surrounding a hexagonal geometry.

\item[\moc{VOID}] the side under consideration has a  zero incoming current
boundary condition.

\item[\moc{REFL}] the side under consideration has a reflective boundary condition. 

\item[\moc{DIAG}] the side under consideration is external to a diagonal axis of symmetry.

\item[\moc{TRAN}] the side under consideration is connected to the opposite side of the domain. This option permits a translation condition to be treated.

\item[\moc{SYME}] the side under consideration is next to an axial axis of symmetry. (symmetric with respect to the central axis of the last row of volumes). The {\tt SYME} condition can also be used in hexagonal geometry, but only with {\tt S30} and {\tt SA60} symmetries.

\item[\moc{ALBE}] the side under consideration has an arbitrary albedo to be specified. 

\item[\dusa{albedo}] geometrical albedo corresponding to the boundary condition \moc{ALBE} (\dusa{albedo} $\ge$ 0.0). 

\item[\dusa{icode}] index of a physical albedo corresponding to the boundary condition \moc{ALBE}. The numerical values of the physical albedo are supplied by the module \moc{MAC:}.

\item[\moc{ZERO}] the side under consideration has a zero flux boundary condition. 

\item[\moc{CYLI}] the side under consideration has a zero incoming current boundary condition with a circular correction applied on the Cartesian boundary. This option is only available in
the $X$--$Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries defined for TRIVAC full--core calculations.

\item[\moc{ACYL}] the side under consideration has an arbitrary albedo with a circular correction applied on the Cartesian boundary. This option is only available in
the $X$--$Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries defined for TRIVAC full--core calculations.

\item[\moc{S30}] hexagonal symmetry of one twelfth of an assembly (see Fig. \fig(s30)).

\begin{figure}[htbp]
\begin{center} 
\epsfxsize=10cm
\centerline{ \epsffile{Fig1.eps}}
\parbox{14cm}{\caption{Hexagonal geometries of type S30 and
SA60}\label{fig:s30}}  \end{center} 
\end{figure}

\item[\moc{SA60}] hexagonal symmetry of one sixth of an assembly of type A (see Fig. \fig(s30)).

\item[\moc{SB60}] hexagonal symmetry of one sixth of an assembly of 
type B (see Fig. \fig(sb60)).

\begin{figure}[htbp] 
\begin{center} 
\epsfxsize=12cm
\centerline{ \epsffile{Fig2.eps}}
\parbox{14cm}{\caption{Hexagonal geometries of type SB60 and
S90}\label{fig:sb60}}  \end{center} 
\end{figure}

\item[\moc{S90}] hexagonal symmetry of one quarter of an assembly (see Fig. \fig(sb60)).

\item[\moc{R120}] hexagonal symmetry of one third of an assembly (rotational symmetry) (see Fig. \fig(r120)).

\begin{figure}[htbp] 
\begin{center} 
\epsfxsize=10cm
\centerline{ \epsffile{Fig3.eps}}
\parbox{14cm}{\caption{Hexagonal geometries of type R120 and
R180}\label{fig:r120}}  \end{center} 
\end{figure}

\item[\moc{R180}] rotational symmetry of a half assembly (see Fig.
\fig(r120)).

\item[\moc{SA180}] hexagonal symmetry of half a type A assembly (see Fig. \fig(sa180)).

\begin{figure}[htbp] 
\begin{center} 
\epsfxsize=5cm
\centerline{ \epsffile{Fig4a.eps}}
\parbox{14cm}{\caption{Hexagonal geometry of type SA180}\label{fig:sa180}} 
\end{center} 
\end{figure}
 
\item[\moc{SB180}] hexagonal symmetry of half a type B assembly (see Fig. \fig(sb180)).

\begin{figure}[htbp] 
\begin{center} 
\epsfxsize=10cm
\centerline{ \epsffile{Fig4b.eps}}
\parbox{14cm}{\caption{Hexagonal geometry of type SB180}\label{fig:sb180}} 
\end{center} 
\end{figure}

\item[\moc{COMPLETE}] complete hexagonal assembly (see Fig.~\fig(compl)).

\begin{figure}[htbp] 
\begin{center} 
\epsfxsize=9cm
\centerline{ \epsffile{Fig5.eps}}
\parbox{14cm}{\caption{Hexagonal geometry of type COMPLETE}\label{fig:compl}} 
\end{center} 
\end{figure}

\item[\moc{RADS}] This keyword is used to specify the cylindrical correction applied in the $X-Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries.\cite{roy}

\item[\moc{ANG}] This keyword allows  the angle (see Fig. \fig(corr))
of the cylindrical notch to be set. By default, no notch is present.

\item[\dusa{nrads}] Number of different corrections along the cylinder main axis (i.e. the $Z$ axis).

\item[\dusa{xrad}(ir)] Coordinate of the $Z$ axis from which the correction is applied.

\item[\dusa{rrad}(ir)] Radius of the real cylindrical boundary.

\item[\dusa{ang}(ir)] Angle of the cylindrical notch. This data is given if and only if the keyword \moc{ANG} is present. \dusa{ang}(ir) $= {\pi \over 2}$ by default (i.e. the correction is applied at every angle).

\begin{figure}[htbp]
\begin{center} 
\epsfxsize=5cm
\centerline{ \epsffile{Fig6.eps}}
\parbox{14cm}{\caption{Cylindrical correction in Cartesian geometry}
\label{fig:corr}} 
\end{center} 
\end{figure}

\end{ListeDeDescription}
 
The only combinations of diagonal symmetry permitted are: \moc{X+} \moc{DIAG} \moc{Y-} \moc{DIAG} and \moc{X-} \moc{DIAG} \moc{Y+} \moc{DIAG}. In these cases the geometry must be a square. The only combinations of translational symmetry permitted are: \moc{X-} \moc{TRAN} \moc{X+} \moc{TRAN}, \moc{Y-} \moc{TRAN} \moc{Y+} \moc{TRAN} and \moc{Z-} \moc{TRAN} \moc{Z+} \moc{TRAN}.

\vskip 0.2cm
\goodbreak

The input corresponding to the \dstr{descMC} structure are the following:

\begin{DataStructure}{Structure \dstr{descMC}}
$[$ \moc{MIX} $\{$  (\dusa{imix}(i),i=1,$lreg$) $|$\\
$~~~~[[$ \moc{PLANE} \dusa{iplan} $\{$ (\dusa{imix}(i),i=1,\dusa{lp}) $|$ \moc{SAME} \dusa{iplan1}\\
$~~~~|~[[$ \moc{CROWN} $\{$ (\dusa{imix}(i),i=1,\dusa{lc}) $|$ \moc{ALL} \dusa{jmix} $|$ \moc{SAME} \dusa{iplan1} $\}~]]$\\
$~~~~|~[[$ \moc{UPTO} \dusa{ic} \moc{ALL} \dusa{jmix} $|$ \moc{SAME} \dusa{iplan1} $\}~]]~]]~\}$\\
$]$
\end{DataStructure}

\noindent

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{MIX}] keyword to attribute an material mixture number to each volume inside the axes of symmetry. When a volume is located inside the axes of symmetry but outside the calculation region it must be declared `virtual' (for example, the corners of a nuclear reactor). The material mixture number should be specified for each volume before mesh-splitting.

\item[\dusa{imix}] type of material mixture associated with a region. It is
important that \dusa{imix}$\le$\dusa{nmixt} where \dusa{nmixt} is defined in the
{\tt } module. If \dusa{imix}=0, the corresponding volume is replaced by a
\moc{VOID} boundary condition. In this case the volume is considered to be
virtual and the flux is not calculated. In the case of a diagonal symmetry, the
type indicator must not be specified for the volumes outside the axis of
symmetry. These values must be specified in the following order:  from \moc{X-}
to \moc{X+}, from \moc{Y-} to \moc{Y+}, from \moc{Z-} to \moc{Z+} and finally
radially from the inside out. 

\item[\moc{PLANE}]  keyword to attribute mixture numbers to each volume inside a single 2D plane. This option is 
valid only for 3D geometries, Cartesian or hexagonal. 

\item[\dusa{iplan}] plane number for which material mixture are input. 

\item[\moc{SAME}]  keyword to attribute the same material mixture numbers of the \dusa{iplan1} plane to the \dusa{iplan} plane. In 
hexagonal geometry, it can indicate that the mixture numbers of the current crown of the \dusa{iplan}th 
plane will be identical to those of the same crown of the \dusa{iplan1}th plane. 

\item[\dusa{iplan1}] plane number used as reference to input the current plane or crown(s). 

\item[\dusa{lp}] number of volumes in a plane. In Cartesian geometry, $lp=lx*ly$ and in hexagonal geometry, 
$lp=lh$. 

\item[\moc{CROWN}]  keyword to attribute mixture numbers to each hexagon of a single crown. This option is only 
valid for \moc{COMPLETE} hexagonal geometry definition. Each use of the keyword \moc{CROWN} increases 
the crown number by 1. So it is not required to give its number, but crowns must be defined from 
the center to the peripherical regions of a plane. 

\item[\dusa{lc}] number of hexagons in the current crown. For the \dusa{i}th crown of a compelete hexagonal plane, 
$lc=(i-1)*6$. The first crown is composed of only one hexagon. 

\item[\moc{ALL}] keyword to specify that the \dusa{lc} material mixture number of the current crown have the same value 
\dusa{jmix}. 

\item[\moc{UPTO}] keyword to attribute material mixture numbers of the current crown up to the \dusa{ic} one. 

\item[\dusa{ic}] number of the last crown in \moc{UPTO} option. Its value must be greater than equal to the current 
crown number. 

\end{ListeDeDescription}

Here we will assume that $lreg$\index{$lreg$} is the exact number of cells  or
elementary cases to be considered. For example, if we had used the \moc{DIAG}
option with a geometry of type \moc{CAR3D} (\dusa{lx}=\dusa{ly}), we would
have: $lreg$=(\dusa{lx}+1)$*$\dusa{ly}$*$\dusa{lz}/2.

\vskip 0.2cm

The following dimensional constraints must also be respected:

\begin{itemize}

\item $nmerge$=number of merged cells (with $nmerge \ge lreg$.),
\item $ngen$=number of generation cells (with $ngen \ge nmerge$.),

\end{itemize}

The inputs corresponding to the \dstr{descPOS} structure are the following:

\begin{DataStructure}{Structure \dstr{descPOS}}
$[$ \moc{MESHX} (\dusa{xxx}(i),i=1,\dusa{lx}+1) $]$\\
$[$ \moc{MESHY} (\dusa{yyy}(i),i=1,\dusa{ly}+1) $]$\\
$[$ \moc{MESHZ} (\dusa{zzz}(i),i=1,\dusa{lz}+1) $]$\\
$[$ \moc{RADIUS} (\dusa{rrr}(i),i=1,\dusa{lr}+1) $]$\\
$[$ \moc{SIDE} \dusa{sidhex} $]$\\
$[$ \moc{SPLITX} (\dusa{ispltx}(i),i=1,\dusa{lx}) $]$\\
$[$ \moc{SPLITY} (\dusa{isplty}(i),i=1,\dusa{ly}) $]$\\
$[$ \moc{SPLITZ} (\dusa{ispltz}(i),i=1,\dusa{lz}) $]$\\
$[$ \moc{SPLITR} (\dusa{ispltr}(i),i=1,\dusa{lr}) $]$\\
$[~\{$ \moc{SPLITH} \dusa{isplth} $|$ \moc{SPLITL} \dusa{ispltl} $\}~]$
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{MESHX}] keyword for the mesh of the geometry along the $X$
axis.
\item[\moc{MESHY}] keyword for the mesh of the geometry along the $Y$
axis. 
\item[\moc{MESHZ}] keyword for the mesh of the geometry along the $Z$
axis. 
\item[\moc{RADIUS}] keyword for the mesh of the geometry in the radial
direction.
\item[\moc{SIDE}] keyword for the length of a side of a hexagon.
\item[\dusa{xxx}] abscissa, corresponding to the limits of the regions making up the geometry. These values must be given in order, from \moc{X-} to \moc{X+}. If the geometry presents a diagonal symmetry this data will also be used for the ordinate.

\item[\dusa{yyy}] ordinate, corresponding to the limits of the regions making up the geometry. These values must be given in order, from \moc{Y-} to \moc{Y+}.

\item[\dusa{zzz}] height, corresponding to the limits of the regions making up the geometry. These values must be given in order, from \moc{Z-} to \moc{Z+}.

\item[\dusa{rrr}] Radii in the cases of cylindrical (\moc{TUBE}
or \moc{TUBEZ}), spherical (\moc{SPHERE}). It is important to note that we must have \dusa{rrr}(1)=0.0.

\item[\dusa{sidhex}] length of a side of a hexagon.

\item[\moc{SPLITX}] keyword for mesh splitting of the geometry along the $X$ axis.

\item[\moc{SPLITY}] keyword for mesh splitting of the geometry along the $Y$ axis.

\item[\moc{SPLITZ}] keyword for mesh splitting of the geometry along the $Z$ axis.

\item[\moc{SPLITR}] keyword for mesh splitting of the geometry in the radial direction.

\item[\dusa{ispltx}] number of sub-volumes that will be defined for each row of the volume along the $X$-axis. If the geometry presents a diagonal symmetry this input will also be used for the splitting along the $Y$-axis. By default, \dusa{ispltx}=1.

\item[\dusa{isplty}] number of sub-volumes that will be defined for each row of the volume along the $Y$-axis. If the geometry presents a diagonal symmetry this input will also be used for the splitting along the $X$-axis. By default, \dusa{isplty}=1.

\item[\dusa{ispltz}] number of sub-volumes that will be defined for each row of the volume along the $Z$-axis. By default, \dusa{ispltz}(i)=1.

\item[\dusa{ispltr}] the value of \dusa{ispltr} gives the number of sub-volumes that will be defined for each tube or each spherical shell. A negative value permits a splitting into equal sub-volumes; a positive value permits a splitting into equal sub-radius spacings. By default, \dusa{ispltr}=1.

\item[\moc{SPLITH}] keyword to specify that a triangular mesh splitting of the hexagonal geometry is to be performed -- for \moc{HEX} and \moc{HEXZ} type geometries. 

\item[\dusa{isplth}] value of the triangular mesh splitting. The number of triangles per hexagon is given by $6 \times$\dusa{isplth}$^2$. \dusa{isplth} $=0$ is used for full hexagon discretization.

\item[\moc{SPLITL}] keyword to specify that a lozenge mesh splitting of the hexagonal geometry is to be performed -- for \moc{HEX} and \moc{HEXZ} type geometries.

\item[\dusa{ispltl}] value of the lozenge splitting. The number of lozenges per hexagon is given by $3 \times$\dusa{ispltl}$^2$.

\end{ListeDeDescription}

The user of the options described above should take care not to exceed  the
limits imposed by the amount of dynamically allocated memory available. For a
pure geometry, let us define the variables $lxp$, $lyp$, $lzp$ and $lrp$ as:

\begin{eqnarray*}
lxp&=&\sum_{i=1}^{{\it lx}} {\it ispltx}(i) \\
lyp&=&\sum_{i=1}^{{\it ly}} {\it isplty}(i) \\
lzp&=&\sum_{i=1}^{{\it lz}} {\it ispltz}(i) \\
lrp&=&\sum_{i=1}^{{\it lr}} {\it ispltr}(i) \\
\end{eqnarray*}

\noindent
thus, the limits that must be respected are the following:

\begin{itemize}

\item $lxp\ge$\dusa{maxpts} for a \moc{CAR1D} geometry.

\item \dusa{lh}$\ge$\dusa{maxpts} for a \moc{HEX} geometry.

\item $lrp\ge$\dusa{maxpts} for the \moc{TUBE} and \moc{SPHERE} geometries.

\item $lxp*lyp\ge$\dusa{maxpts} for the \moc{CAR2D} geometry without diagonal symmetry. 

\item $lxp*(lyp+1)/2\ge$\dusa{maxpts} for the \moc{CAR2D} geometry with diagonal symmetry. 

\item $lrp*lzp\ge$\dusa{maxpts} for the \moc{TUBEZ} geometry.

\item $lxp*lyp*lzp\ge$\dusa{maxpts} for the \moc{CAR3D} geometry without diagonal symmetry. 

\item $lxp*(lyp+1)*lzp/2\ge$\dusa{maxpts} for the \moc{CAR3D} geometry with diagonal symmetry. 

\item \dusa{lh}$*lzp\ge$\dusa{maxpts} for the \moc{HEXZ} geometry.

\end{itemize}

\vskip 0.2cm

\subsubsection{Examples of geometries}

We will now give a few examples which will permit users to better understand the procedure used to define the geometries in TRIVAC.

\begin{enumerate}

\item Slab geometry (see Fig. \fig(plaque)):

\begin{verbatim}
GEOMETRY1 := GEO: :: CAR1D 6
 X- VOID X+ ALBE 1.2
 MESHX 0.0 0.1 0.3 0.5 0.6 0.8 1.0
 SPLITX 2 2 2 1 2 1
 MIX 1 2 3 4 5 6
 ;
\end{verbatim}

\begin{figure}[htbp]
\begin{center} 
\epsfxsize=9cm
\centerline{ \epsffile{Fig9.eps}}
\parbox{14cm}{\caption{Slab geometry with mesh-splitting}
\label{fig:plaque}} 
\end{center} 
\end{figure}
 
\item Two-dimensional hexagonal geometry (see Fig. \fig(hexcel)):

\begin{verbatim}
GEOMETRY4 := GEO: :: HEX 12
 HBC S30 ALBE 1.6
 SIDE 1.3
 MIX 1 1 1 2 2 2 3 3 3 4 5 6
 ;
\end{verbatim}

\begin{figure}[htbp]
\begin{center} 
\epsfxsize=7cm
\centerline{ \epsffile{Fig12.eps}}
\parbox{14cm}{\caption{Two-dimensional hexagonal geometry}
\label{fig:hexcel}} 
\end{center} 
\end{figure}

\end{enumerate}
\clearpage

\subsection{The {\tt MAC:} module}

In TRIVAC the macroscopic cross sections and diffusion coefficients are read from the input data file using REDLEC. The general format of the data for the \moc{MAC:} module in TRIVAC is the following:

\begin{DataStructure}{Structure \dstr{MAC:}}
\dusa{MACR1} \moc{:=} \moc{MAC:} $[~\{$ \dusa{MACR1} $|$ \dusa{MACR2} $\}~]$ \moc{::} \dstr{mac\_data}
\end{DataStructure}

\goodbreak
\noindent where

\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{MACR1}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the new Macrolib
produced by the module. A Macrolib contains macroscopic cross sections and diffusion coefficients.
If \dusa{MACR1} appears on both LHS and RHS, it is updated; otherwise, it is
created. If \dusa{MACR1} is created, all macroscopic cross sections and
diffusion coefficients are first initialized to zero.

\item[\dusa{MACR2}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing a read-only
Macrolib. The information existing in \dusa{MACR2} is copied into \dusa{MACR1}, but \dusa{MACR2} is not modified.

\item[\dstr{mac\_data}] structure containing the data to module {\tt MAC:} (see Sect.~\ref{sect:mac_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt MAC:}}\label{sect:mac_data}

\begin{DataStructure}{Structure \dstr{mac\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{NGRO} \dusa{ngroup} $]$ \\
$[$ \moc{NIFI} \dusa{nifiss} $]$ \\
$[$ \moc{DELP} \dusa{ndel} $]$ \\
$[$ \moc{ANIS} \dusa{naniso} $]$ \\
$[$ \moc{NMIX} \dusa{nmixt} $]$ \\
$[$ \moc{DELP} \dusa{ndg} $]$ \\
$[$ \moc{ANIS} \dusa{naniso} $]$ \\
$[$ \moc{ALBP} \dusa{nalbp} ((\dusa{albedp}(ig,ia),ig=1,\dusa{ngroup}),ia=1,\dusa{nalbp}) $]$ \\
$[$ \moc{READ} \moc{INPUT} $\{$ $[[$ \dstr{macxs} $]]$ $|$ \moc{OLD} \dstr{triv2} $|$ \moc{DOLD} \dstr{trip2} $\}$ $]$ \\
$[[$ \moc{STEP} \dusa{istep} \moc{READ} \moc{INPUT} $[[$ \dstr{macxs} $]]$ $]]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing in module {\tt MAC:}. =0 for no print. The macroscopic cross sections will be printed if the parameter \dusa{iprint} is greater than or equal to 2. The transfer cross sections will be printed if this parameter is greater than or equal to 3.

\item[\moc{NGRO}] keyword used to  define the number of energy groups. This
data is given if and only if \dusa{MACR1} is created.

\item[\dusa{ngroup}] the number of energy groups used for the calculations in TRIVAC. 

\item[\moc{NIFI}] keyword used to specify the maximum number of fissile
spectrum associated with each mixture. Each fission spectrum generally
represents a fissile isotope. This information is required only if \dusa{MACLIB}
is created and the cross sections are taken directly from the input data stream.

\item[\dusa{nifiss}] the maximum number of fissile isotopes per mixture. The
default value is \dusa{nifiss}=1.

\item[\moc{DELP}] keyword used to specify the number of delayed neutron groups.

\item[\dusa{ndel}] the number of delayed neutron groups. The
default value is \dusa{ndel}=0.

\item[\moc{ANIS}] keyword used to specify the maximum level of anisotropy
permitted in the scattering cross sections. This information is required only if
\dusa{MACLIB} is created and the cross sections are taken directly from the
input data stream.

\item[\dusa{naniso}] number of Legendre orders for the representation of the
scattering cross sections. The default value is \dusa{naniso}=1 corresponding to
the use of isotropic scattering cross sections.

\item[\moc{NMIX}] keyword used to define the number of material mixtures. 
This data is given if and only if \dusa{MACR1} is created.

\item[\dusa{nmixt}] the maximum number of material mixtures (a material mixture is characterized by a distinct set of macroscopic cross sections). 

\item[\moc{DELP}] keyword used to set \dusa{ndg}. This data is used 
only if the fission spectrum $\vec{\chi}_p$ is different from the delayed neutron spectrum $\vec{\chi}_i$ for each precursor group $i$.

\item[\dusa{ndg}] number of delayed neutron groups.

\item[\moc{ANIS}] keyword used to specify the maximum  level of anisotropy
permitted in the diffusion cross sections. This data is given only if
\dusa{MACR1} is created.

\item[\dusa{naniso}] the maximum level of anisotropy. The default value is \dusa{naniso}=1.

\item[\moc{ALBP}] keyword used for the input of the physical albedos.

\item[\dusa{nalbp}] the number of physical albedos per energy group.

\item[\dusa{albedp}] multigroup physical albedo array (real numbers). 

\item[\moc{STEP}] keyword used to create a perturbation directory.

\item[\dusa{istep}] the index of the perturbation directory. 

\item[\moc{READ}] keyword used to specify input of the cross section
information from default input by REDLEC.

\item[\dstr{macxs}] structure describing the format used  for reading the
mixture cross sections and diffusion coefficients (or perturbation values of
the cross sections and diffusion coefficients) from the input data file.
 
\item[\moc{OLD}] keyword used to specify input of the cross section information 
from default input by REDLEC in the TRIVAC-2 format. The nuclear data will be
translated into TRIVAC format and printed on the listing.

\item[\dstr{triv2}] structure describing the format used  for reading the
mixture cross sections and diffusion coefficients from the input data file in
TRIVAC-2 format.
 
\item[\moc{DOLD}] keyword used to specify  perturbed input of the cross
section information from default input by REDLEC in the TRIVAC-2 format. The
perturbed nuclear data will be translated into TRIVAC format and printed on
the listing.

\item[\dstr{trip2}] structure describing the  format used for reading the
mixture values of the perturbed cross sections and diffusion coefficients from
the input data file in TRIVAC-2 format.

\end{ListeDeDescription}

\vskip 0.2cm
\goodbreak

\subsubsection{Description of the nuclear data}

\begin{DataStructure}{Structure \dstr{macxs}}
\moc{MIX} \dusa{matnum} \\
$~~[~\{$ \moc{NTOT0} $|$ \moc{TOTAL} $\}$ (\dusa{xssigt}(jg),    jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{NTOT1} (\dusa{xssig1}(jg),    jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{TRANC} (\dusa{xsstra}(jg),    jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{NUSIGF} ((\dusa{xssigf}(jf,jg), jg=1,\dusa{ngroup}), jf=1,\dusa{nifiss}) $]$ \\
$~~[$ \moc{CHI}    ((\dusa{xschi}(jf,jg),    jg=1,\dusa{ngroup}), jf=1,\dusa{nifiss})$]$ \\
$~~[$ \moc{FIXE}   (\dusa{xsfixe}(jg),    jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{DIFF}   (\dusa{diff}(jg),    jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{DIFFX} (\dusa{xdiffx}(jg), jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{DIFFY} (\dusa{xdiffy}(jg), jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{DIFFZ} (\dusa{xdiffz}(jg), jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{NUSIGD} (((\dusa{xssigd}(jf,idel,jg), jg=1,\dusa{ngroup}), idel=1,\dusa{ndel}), jf=1,\dusa{nifiss}) $]$ \\
$~~[$ \moc{CHDL}   (((\dusa{xschid}(jf,idel,jg), jg=1,\dusa{ngroup}), idel=1,\dusa{ndel}), jf=1,\dusa{nifiss})$]$ \\
$~~[$ \moc{OVERV} (\dusa{overv}(jg), jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{H-FACTOR} (\dusa{xhfact}(jg), jg=1,\dusa{ngroup}) $]$ \\
$~~[$ \moc{SCAT} ((\dusa{nbscat}(jl,jg), \dusa{ilastg}(jl,jg), (\dusa{scat}(jl,jg,ig), ig=1,\dusa{nbscat}(jl,jg) ), jg=1,\dusa{ngroup}), jl=1,\dusa{naniso}) $]$
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{MIX}] keyword to specify that the macroscopic cross sections
associated with a new mixture are to be read.

\item[\dusa{matnum}] identifier for the next mixture to be read. The maximum
value permitted for this identifier is \dusa{nmixt}. When \dusa{matnum} is
absent, the mixtures are numbered consecutively starting with 1 or with the last
mixture number read either on the GOXS or the input stream.  

\item[\moc{NTOT0}] keyword to specify that the total macroscopic cross
sections for this mixture follows.

\item[\moc{TOTAL}] alias keyword for \moc{NTOT0}.

\item[\dusa{xssigt}] array representing the multigroup total macroscopic cross
section ($\Sigma^{g}$ in \xsunit) associated with this mixture.

\item[\moc{NTOT1}] keyword to specify that the $P_1$--weighted total macroscopic cross
sections for this mixture follows.

\item[\dusa{xssig1}] array representing the multigroup $P_1$--weighted total macroscopic cross
section ($\Sigma_1^{g}$ in \xsunit) associated with this mixture.

\item[\moc{TRANC}] keyword to specify that the transport correction macroscopic cross
sections for this mixture follows.

\item[\dusa{xsstra}] array representing the multigroup transport correction macroscopic cross
section ($\Sigma_{\rm tc}^{g}$ in \xsunit) associated with this mixture.

\item[\moc{NUSIGF}] keyword to specify that the macroscopic fission cross
section multiplied by the average number of neutrons per fission for this
mixture follows.

\item[\dusa{xssigf}] array representing the multigroup macroscopic fission
cross section multiplied by the average number
of neutrons per fission ($\nu\Sigma_{f}^{g}$ in \xsunit) for all the fissile
isotopes associated with this mixture. 

\item[\moc{CHI}] keyword to specify that the fission spectrum for this mixture
follows. By default, if \moc{CHI} is not provided, all fission neutrons are
emitted in group index 1 (fast group).

\item[\dusa{xschi}] array representing the multigroup fission spectrum
($\chi^{g}$) for all the fissile isotopes associated with this mixture.

\item[\moc{FIXE}] keyword to specify that the fixed neutron source density for
this mixture follows.

\item[\dusa{xsfixe}] array representing the multigroup fixed neutron source
density for this mixture ($S^{g}$ in $s^{-1}cm^{-3}$). 

\item[\moc{DIFF}] keyword to specify that the isotropic diffusion coefficient for
this mixture follows.

\item[\dusa{diff}] array representing the multigroup isotropic diffusion coefficient for
this mixture ($D^{g}$ in $cm$). 

\item[\moc{DIFFX}] keyword for input of the $X$--directed diffusion coefficient. 

\item[\dusa{xdiffx}] array representing the multigroup $X$--directed diffusion coefficient ($D^g_x$ in cm) for the mixture 
\dusa{matnum}. 

\item[\moc{DIFFY}] keyword for input of the $Y$--directed diffusion coefficient. 

\item[\dusa{xdiffy}] array representing the multigroup $Y$--directed diffusion coefficient ($D^g_y$ in cm) for the mixture 
\dusa{matnum}. 

\item[\moc{DIFFZ}] keyword for input of the $Z$--directed diffusion coefficient.

\item[\dusa{xdiffz}] array representing the multigroup $Z$--directed diffusion coefficient ($D^g_z$ in cm) for the mixture 
\dusa{matnum}. 

\item[\moc{NUSIGD}] keyword to specify that the delayed macroscopic fission cross
section multiplied by the average number of neutrons per fission for this
mixture follows.

\item[\dusa{xssigd}] array representing the delayed multigroup macroscopic fission
cross section multiplied by the average number
of neutrons per fission ($\nu\Sigma_{f}^{g,idel}$ in \xsunit) for all the fissile
isotopes associated with this mixture. 

\item[\moc{CHDL}] keyword to specify that the delayed fission spectrum for this mixture
follows.

\item[\dusa{xschid}] array representing the delayed multigroup fission spectrum
($\chi^{g,idel}$) for all the fissile isotopes associated with this mixture.

\item[\moc{OVERV}] keyword for input of the multigroup average of the inverse neutron velocity.

\item[\dusa{overv}] array representing the multigroup average of the inverse neutron velocity ($<1/v>_{m}^g$) for the mixture 
\dusa{matnum}. 

\item[\moc{H-FACTOR}] keyword to specify that the power factor for
this mixture follows.

\item[\dusa{hfact}] array representing the multigroup power factor for this
mixture ($H^{g}$ in $eV~cm^{-1}$). 

\item[\moc{SCAT}] keyword to specify that the macroscopic scattering cross
section matrix for this mixture follows.

\item[\dusa{nbscat}] array representing the number of secondary groups ig with
non vanishing macroscopic scattering cross section towards the primary group jg
considered for each anisotropy level associated with this mixture.

\item[\dusa{ilastg}] array representing the group index of the most thermal
group with non-vanishing macroscopic scattering cross section towards the
primary group jg considered for each anisotropy level associated with this
mixture.

\item[\dusa{xsscat}] array representing the multigroup macroscopic scattering
cross section ($\Sigma_{sl}^{ig\to jg}$ in \xsunit) from the secondary group ig
towards the primary group jg considered for each anisotropy level associated
with this mixture. The elements are ordered using decreasing secondary group
number ig, from \dusa{ilastg} to (\dusa{ilastg}$-$\dusa{nbscat}$+1$), and an
increasing primary group number jg.

\end{ListeDeDescription}

For example, the two group isotropic and linearly anisotropic scattering
cross sections (\dusa{ngroup}=2, \dusa{naniso}=2) given by:

\begin{center}
\begin{tabular}{lcccc}
$L$ & $\Sigma_{s,l}^{1\to 1}$ & $\Sigma_{s,l}^{1\to 2}$
    & $\Sigma_{s,l}^{2\to 1}$ & $\Sigma_{s,l}^{2\to 2}$ \\
0   & 0.50 ${\rm cm}^{-1}$ & 0.20 ${\rm cm}^{-1}$ & 0.03 ${\rm cm}^{-1}$ & 0.40 ${\rm cm}^{-1}$ \\
1   & 0.05 ${\rm cm}^{-1}$ & 0.00 ${\rm cm}^{-1}$ & 0.00 ${\rm cm}^{-1}$ & 0.04 ${\rm cm}^{-1}$ 
\end{tabular}
\end{center}

\noindent must be entered as:

\begin{verbatim}
SCAT  (*L=0*) 2 2 (*2->1*) 0.03 (*1->1*) 0.50 
              2 2 (*2->2*) 0.40 (*1->2*) 0.20 
      (*L=1*) 1 1               (*1->1*) 0.05 
              1 2 (*2->2*) 0.04             
\end{verbatim}
\clearpage

\subsection{The {\tt BIVACT:} module}\label{sect:bivact}

The {\tt BIVACT:} module is used to perform  a BIVAC-type {\sc tracking} on a 1D/2D geometry.\cite{bivac,benaboud,SVAT1}
The geometry is analyzed and a LCM object with signature {\tt L\_BIVAC} is created with the following information:
\begin{itemize}
\item Diagonal and hexagonal symmetries are unfolded and the mesh-splitting operations are performed. Volumes, material mixture and averaged flux recovery indices are computed on the resulting geometry.
\item A finite element discretization is performed and the corresponding numbering is saved.
\item The unit finite element matrices (mass, stiffness, etc.) are recovered.
\end{itemize}

The calling specifications are:

\begin{DataStructure}{Structure \dstr{BIVACT:}}
\dusa{TRACK} \moc{:=} \moc{BIVACT:} $[$ \dusa{TRACK} $]$ \dusa{GEOM}  \moc{::} \dstr{bivact\_data}
\end{DataStructure}

\goodbreak
\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_BIVAC}) containing the {\sc tracking} information. If \dusa{TRACK} appears on the RHS, the previous settings will be applied by default.

\item[\dusa{GEOM}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_GEOM}) containing the geometry.

\item[\dstr{bivact\_data}] structure containing the data to module {\tt BIVACT:} (see Sect.~\ref{sect:bivact_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt BIVACT:}}\label{sect:bivact_data}

\begin{DataStructure}{Structure \dstr{bivact\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{TITL} \dusa{TITLE} $]$ \\
$[$ \moc{MAXR} \dusa{maxpts} $]$ \\
$[$ $\{$ \moc{PRIM} $[$ \dusa{ielem} \dusa{icol} $]$ \\
~~~~$|$ \moc{DUAL} $[$ \dusa{ielem} \dusa{icol} $]$ \\
~~~~$|$ \moc{MCFD} $\}~]$ \\
$[~\{$ \moc{PN} $|$ \moc{SPN} $\}$ $[$ \moc{DIFF} $]$ \dusa{nlf} $[$ \moc{SCAT} \dusa{iscat} $]~[$ \moc{VOID} \dusa{nvd}~$]~]$ \\
{\tt ;}
\end{DataStructure}

\noindent where

\begin{ListeDeDescription}{mmmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing  in module {\tt
BIVACT:}. =0 for no print; =1 for minimum printing (default value); Larger
values produce increasing amounts of output.

\item[\moc{TITL}] keyword which allows the run title to be set.

\item[\dusa{TITLE}] the title associated with a TRIVAC run. This
title may contain up to 72 characters. The default when \moc{TITL} is not specified is no title.

\item[\moc{MAXR}] keyword which permits the maximum number of regions to be considered during a TRIVAC run to be specified.

\item[\dusa{maxpts}] maximum dimensions of the problem to be considered.  The
default value is set to the number of regions previously computed by the {\tt
GEO:} module but this value is insufficient if symmetries or mesh-splitting
are specified.

\item[\moc{PRIM}] keyword to set a primal finite element (classical)
discretization.

\item[\moc{DUAL}] keyword to set a mixed-dual finite element discretization. If the
geometry is hexagonal, a Thomas-Raviart-Schneider method is used.\cite{rts}

\item[\moc{MCFD}] keyword to set a mesh-centered finite difference discretization
in hexagonal geometry.

\item[\dusa{ielem}] order of the finite element representation.  The values
permitted are 1 (linear polynomials), 2 (parabolic polynomials), 3 (cubic
polynomials) or 4 (quartic polynomials). By default \dusa{ielem}=1.

\item[\dusa{icol}] type of quadrature used to integrate the mass matrices. The
values permitted are 1 (analytical integration), 2  (Gauss-Lobatto quadrature)
or 3 (Gauss-Legendre quadrature). By default \dusa{icol}=2. The analytical
integration corresponds to classical finite elements; the Gauss-Lobatto
quadrature corresponds to a variational or nodal type collocation and the
Gauss-Legendre quadrature corresponds to superconvergent finite elements.

\item[\moc{PN}] keyword to set a spherical harmonics ($P_n$) expansion of the flux.\cite{nse2005}

\item[\moc{SPN}] keyword to set a simplified spherical harmonics ($SP_n$) expansion
of the flux.\cite{nse2005,ane10a} This option is currently available with 1D and 2D Cartesian geometries
and with 2D hexagonal geometries.

\item[\moc{DIFF}] keyword to force using $1/3D^{g}$ as $\Sigma_1^{g}-\Sigma_{{\rm s}1}^{g}$ cross sections. A $P_1$ or $SP_1$ method
will therefore behave as diffusion theory.

\item[\dusa{nlf}] order of the $P_n$ or $SP_n$ expansion (odd number). Set to zero for diffusion theory (default value).

\item[\moc{SCAT}] keyword to limit the anisotropy of scattering sources.

\item[\dusa{iscat}] number of terms in the scattering sources. \dusa{iscat} $=1$ is used for
isotropic scattering in the laboratory system. \dusa{iscat} $=2$ is used for
linearly anisotropic scattering in the laboratory system. The default value is set to $n+1$
in $P_n$ or $SP_n$ case.

\item[\moc{VOID}] keyword to set the number of base points in the Gauss-Legendre quadrature used to integrate
void boundary conditions if \dusa{icol} $=3$ and \dusa{n} $\ne 0$.

\item[\dusa{nvd}] type of quadrature. The values
permitted are: 0 (use a (\dusa{n}$+2$)--point quadrature consistent with $P_{{\rm n}}$ theory),
1 (use a (\dusa{n}$+1$)--point quadrature consistent with $S_{{\rm n}+1}$ theory),
2 (use an analytical integration of the void boundary conditions). By default \dusa{nvd}=0.

\end{ListeDeDescription}

Various finite element approximations can be obtained by combining different values of \dusa{ielem} and \dusa{icol}:
\begin{itemize}
\item {\tt PRIM 1 1~:} Linear finite elements;
\item {\tt PRIM 1 2~:} Mesh corner finite differences;
\item {\tt PRIM 1 3~:} Linear superconvergent finite elements;
\item {\tt PRIM 2 1~:} Quadratic finite elements;
\item {\tt PRIM 2 2~:} Quadratic variational collocation method;
\item {\tt PRIM 2 3~:} Quadratic superconvergent finite elements;
\item {\tt PRIM 3 1~:} Cubic finite elements;
\item {\tt PRIM 3 2~:} Cubic variational collocation method;
\item {\tt PRIM 3 3~:} Cubic superconvergent finite elements;
\item {\tt PRIM 4 2~:} Quartic variational collocation method;
\item {\tt DUAL 1 1~:} Mixed-dual linear finite elements;
\item {\tt DUAL 1 2~:} Mesh centered finite differences;
\item {\tt DUAL 1 3~:} Mixed-dual linear superconvergent finite elements (numerically equivalent to {\tt PRIM~1~3});
\item {\tt DUAL 2 1~:} Mixed-dual quadratic finite elements;
\item {\tt DUAL 2 2~:} Quadratic nodal collocation method;
\item {\tt DUAL 2 3~:} Mixed-dual quadratic superconvergent finite elements (numerically equivalent to {\tt PRIM~2~3});
\item {\tt DUAL 3 1~:} Mixed-dual cubic finite elements;
\item {\tt DUAL 3 2~:} Cubic nodal collocation method;
\item {\tt DUAL 3 3~:} Mixed-dual cubic superconvergent finite elements (numerically equivalent to {\tt PRIM~3~3});
\item {\tt DUAL 4 2~:} Quartic nodal collocation method;
\end{itemize}
\clearpage

\subsection{The {\tt TRIVAT:} module}

The {\tt TRIVAT:} module is used to perform a TRIVAC-type {\sc tracking} on a
1D/2D/3D geometry.\cite{SVAT1,SVAT2,MCFD,Trivac,mixte-dual,benaboud} The
geometry is analyzed and a LCM object with signature {\tt L\_TRIVAC} is
created with the following information:

\begin{itemize}
\item Diagonal and hexagonal symmetries are unfolded and the mesh-splitting 
operations are performed. Volumes, material mixture and averaged flux recovery
indices are computed on the resulting geometry. \item A finite element
discretization is performed and the corresponding numbering is saved. \item The
unit finite element matrices (mass, stiffness, etc.) are recovered. \item
Indices related to an ADI preconditioning with or without supervectorization
are saved. \end{itemize}

The calling specifications are:

\begin{DataStructure}{Structure \dstr{TRIVAT:}}
\dusa{TRACK} \moc{:=} \moc{TRIVAT:} $[$ \dusa{TRACK} $]$ \dusa{GEOM}  \moc{::} \dstr{trivat\_data}
\end{DataStructure}

\goodbreak
\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{TRACK}] {\tt character*12} of the {\sc lcm} object (type {\tt L\_TRIVAC}) 
containing the {\sc tracking} information. If \dusa{TRACK} appears on the RHS, the
previous settings will be applied by default.

\item[\dusa{GEOM}] {\tt character*12} of the {\sc lcm} object (type {\tt
L\_GEOM}) containing the geometry.

\item[\dstr{trivat\_data}] structure containing  the data to module {\tt TRIVAT:} (see Sect.~\ref{sect:trivat_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt TRIVAT:}}\label{sect:trivat_data}

\begin{DataStructure}{Structure \dstr{trivat\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{TITL} \dusa{TITLE} $]$ \\
$[$ \moc{MAXR} \dusa{maxpts} $]$ \\
$[~\{$ \moc{PRIM} $[$ \dusa{ielem} $]~|$ \moc{DUAL} $[$ \dusa{ielem} \dusa{icol} $]~|$ \moc{MCFD} $[$ \dusa{ielem} $]~|$ \moc{LUMP} $[$ \dusa{ielem} $]~\}~]$ \\
$[$ \moc{SPN} $[$ \moc{DIFF} $]$ \dusa{nlf} $[$ \moc{SCAT} \dusa{iscat} $]~[$ \moc{VOID} \dusa{nvd} $]~]$ \\
$[$ \moc{ADI} \dusa{nadi} $]$ \\
$[$ \moc{VECT} $[$ \dusa{iseg} $]~[$ \moc{PRTV} \dusa{impv} $]~]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing  in module {\tt
TRIVAT:}. =0 for no print; =1 for minimum printing (default value); Larger
values produce increasing amounts of output.

\item[\moc{TITL}] keyword which allows the run title to be set.

\item[\dusa{TITLE}] the title associated with a TRIVAC run. This
title may contain up to 72 characters. The default when \moc{TITL} is not specified is no title.

\item[\moc{MAXR}] keyword which permits the maximum number of regions to be considered during a TRIVAC run to be specified.

\item[\dusa{maxpts}] maximum dimensions of the problem to be considered.  The
default value is set to the number of regions previously computed by the {\tt
GEO:} module but this value is insufficient if symmetries or mesh-splitting
are specified.

\item[\moc{PRIM}] keyword to set a discretization based on the variational collocation method.

\item[\moc{DUAL}] keyword to set a mixed-dual finite element discretization. If the
geometry is hexagonal, a Thomas-Raviart-Schneider method is used.\cite{rts}

\item[\moc{MCFD}] keyword to set a discretization based  on the nodal
collocation method. The mesh centered finite difference approximation is the
default option and is generally set using {\tt MCFD~1}. The {\tt MCFD}
approximations are numerically equivalent to the {\tt DUAL} approximations
with \dusa{icol}=2; however, the {\tt MCFD} approximations are less
expensive. 

\item[\moc{LUMP}] keyword to set a discretization  based on the nodal
collocation method with serendipity approximation. The serendipity
approximation is different from the \moc{MCFD} option in cases with \dusa{ielem}$\ge$2. This option is not available for hexagonal geometries.

\item[\dusa{ielem}] order of the finite element representation.  The values
permitted are: 1 (linear polynomials), 2 (parabolic polynomials), 3 (cubic
polynomials) or 4 (quartic polynomials). By default \dusa{ielem}=1.

\item[\dusa{icol}] type of quadrature used to  integrate the mass matrices.
The values permitted are: 1 (analytical integration), 2  (Gauss-Lobatto
quadrature) or 3 (Gauss-Legendre quadrature). By default \dusa{icol}=2. The
analytical integration corresponds to classical finite elements; the
Gauss-Lobatto quadrature corresponds to a variational or nodal type
collocation and the Gauss-Legendre quadrature corresponds to superconvergent
finite elements.

\item[\moc{SPN}] keyword to set a simplified spherical harmonics ($SP_n$) expansion
of the flux.\cite{nse2005,ane10a} This option is available with 1D, 2D and 3D Cartesian geometries and with 2D and 3D
hexagonal geometries.

\item[\moc{DIFF}] keyword to force using $1/3D^{g}$ as $\Sigma_1^{g}-\Sigma_{{\rm s}1}^{g}$ cross sections. A $P_1$ or $SP_1$ method
will therefore behave as diffusion theory.

\item[\dusa{nlf}] order of the $P_n$ or $SP_n$ expansion (odd number). Set to zero for diffusion theory (default value).

\item[\moc{SCAT}] keyword to limit the anisotropy of scattering sources.

\item[\dusa{iscat}] number of terms in the scattering sources. \dusa{iscat} $=1$ is used for
isotropic scattering in the laboratory system. \dusa{iscat} $=2$ is used for
linearly anisotropic scattering in the laboratory system. The default value is set to $n+1$
in $P_n$ or $SP_n$ case.

\item[\moc{VOID}] keyword to set the number of base points in the Gauss-Legendre quadrature used to integrate
void boundary conditions if \dusa{icol} $=3$ and \dusa{n} $\ne 0$.

\item[\dusa{nvd}] type of quadrature. The values
permitted are: 0 (use a (\dusa{n}$+2$)--point quadrature consistent with $P_{\rm n}$ theory),
1 (use a (\dusa{n}$+1$)--point quadrature consistent with $S_{{\rm n}+1}$ theory),
2 (use an analytical integration of the void boundary conditions). By default \dusa{nvd}=0.

\item[\moc{ADI}] keyword to set the number of ADI iterations at the inner
iterative level.

\item[\dusa{nadi}] number of ADI iterations (default: \dusa{nadi} $=2$).

\item[\moc{VECT}] keyword to set an ADI preconditionning with
supervectorization. By default, TRIVAC uses an ADI preconditionning without
supervectorization.

\item[\dusa{iseg}] width of a vectorial register. \dusa{iseg} is generally a multiple of 64. By default, \dusa{iseg}=64.

\item[\moc{PRTV}] keyword used to set \dusa{impv}.

\item[\dusa{impv}] index used to control the  printing in supervectorization
subroutines. =0 for no print; =1 for minimum printing (default value); Larger
values produce increasing amounts of output.

\end{ListeDeDescription}
Various finite element approximations can be obtained with different values of \dusa{ielem} (see Sect.~\ref{sect:bivact}).
\clearpage

\subsection{The {\tt BIVACA:} module}

The {\tt BIVACA:} module is used to compute the finite element system matrices (type {\tt L\_SYSTEM}) corresponding to a BIVAC {\sc tracking} (type {\tt L\_BIVAC}) and to a set of nuclear properties (type {\tt L\_MACROLIB}). The calling specifications are:

\begin{DataStructure}{Structure \dstr{BIVACA:}}
\dusa{SYST} \moc{:=} \moc{BIVACA:} $[$ \dusa{SYST} $]$ \dusa{MACRO}  \dusa{TRACK} \moc{::} \dstr{bivaca\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{SYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) containing the system matrices. If \dusa{SYST} appears on the RHS, the system matrices previously stored in \dusa{SYST} are kept.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the macroscopic cross sections and diffusion coefficients.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_BIVAC}) containing the BIVAC {\sc tracking}.

\item[\dstr{bivaca\_data}] structure containing the data to module {\tt BIVACA:} (see Sect.~\ref{sect:bivaca_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt BIVACA:}}\label{sect:bivaca_data}

\begin{DataStructure}{Structure \dstr{bivaca\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]~[$ \moc{UNIT} $]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control  the printing in module {\tt
BIVACA:}. =0 for no print; =1 for minimum printing (default value); Larger
values produce increasing amounts of output.

\item[\moc{UNIT}] A system matrix corresponding to cross sections all set to 1.0 is computed. This keyword is mandatory if
the system matrices in \dusa{SYST} are going to be used by \moc{INIKIN:} or \moc{KINSOL:} modules (see Sects.~\ref{sect:inikin}
and~\ref{sect:kinsol}).

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt TRIVAA:} module}

The TRIVAA: module is used to compute the finite element system matrices (type {\tt L\_SYSTEM}) corresponding to a TRIVAC {\sc tracking} (type {\tt L\_TRIVAC}) and to a set of nuclear properties (type {\tt L\_MACROLIB}). The calling specifications are:

\begin{DataStructure}{Structure \dstr{TRIVAA:}}
\dusa{SYST} \moc{:=} \moc{TRIVAA:} $[$ \dusa{SYST} $]$ \dusa{MACRO}  \dusa{TRACK} $[$ \dusa{DMACRO} $]$ \moc{::} \dstr{trivaa\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{SYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) containing the system matrices. If \dusa{SYST} appears on the RHS, the system matrices previously stored in \dusa{SYST} are kept.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the macroscopic cross sections and diffusion coefficients.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRIVAC}) containing the TRIVAC {\sc tracking}.

\item[\dusa{DMACRO}] {\tt character*12} name of the {\sc lcm} object  (type {\tt
L\_MACROLIB}) containing derivatives or perturbations of the macroscopic cross
sections and diffusion coefficients. If \dusa{DMACRO} is given, only
the derivatives or perturbations of the system matrices are computed.

\item[\dstr{trivaa\_data}] structure containing the data to module {\tt TRIVAA:} (see Sect.~\ref{sect:trivaa_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt TRIVAA:}}\label{sect:trivaa_data}

\begin{DataStructure}{Structure \dstr{trivaa\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{SKIP} $]$ $~[\{$ \moc{DERI} $|$ \moc{PERT} $\}]$ $~[$ \moc{UNIT} $]~[$ \moc{OVEL} $]$\\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing  in module {\tt
TRIVAA:}. =0 for no print; =1 for minimum printing (default value); Larger
values produce increasing amounts of output.

\item[\moc{SKIP}] keyword used to skip the system matrix assembly but to perform the $L-D-L^T$ factorization. Use the system matrices already present in \dusa{SYST}.

\item[\moc{DERI}] The information recovered from \dusa{DMACRO}  is used as
derivatives of nuclear properties with respect to a state variable.
Derivatives of system matrices with respect to the same state variable are
computed.

\item[\moc{PERT}] The information recovered from \dusa{DMACRO}  is used as
the perturbation of the nuclear properties. Perturbations of the system matrices
are computed.

\item[\moc{UNIT}] A system matrix corresponding to cross sections all set to 1.0 is computed. This keyword is mandatory if
the system matrices in \dusa{SYST} are going to be used by \moc{INIKIN:} or \moc{KINSOL:} modules (see Sects.~\ref{sect:inikin}
and~\ref{sect:kinsol}).

\item[\moc{OVEL}] The reciprocal neutron velocities for each material mixture are recovered from the input {\sc macrolib} \dusa{MACRO} and used
to compute the corresponding system matrices. This capability is deprecated.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt FLUD:} module}

The {\tt FLUD:} module is used to compute the solution to an eigenvalue problem corresponding to a set of system matrices (type {\tt L\_SYSTEM}). The calling specifications are:

\begin{DataStructure}{Structure \dstr{FLUD:}}
\dusa{FLUX} \moc{:=} \moc{FLUD:} $[$ \dusa{FLUX} $]$ \dusa{SYST} \dusa{TRACK} $[$ \dusa{MACRO} $]$ \moc{::} \dstr{flud\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{FLUX}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing the solution. If \dusa{FLUX} appears on the RHS, the solution previously stored in \dusa{FLUX} is used to initialize the new iterative process; otherwise, a uniform unknown vector is used.

\item[\dusa{SYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) containing the system matrices.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing the {\sc tracking}.

\item[\dusa{MACRO}] {\tt character*12} name of the optional {\sc lcm} object (type {\tt L\_MACROLIB}) containing the cross sections. This
object is only used to set a link to the {\sc macrolib} name inside the {\sc flux} object. By default, the name of the {\sc macrolib} is recovered
from the link in the {\sc system} object.

\item[\dstr{flud\_data}] structure containing the data to module {\tt FLUD:} (see Sect.~\ref{sect:fld_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt FLUD:}}\label{sect:fld_data}

\begin{DataStructure}{Structure \dstr{flud\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[~\{$ \moc{VAR1} $|$ \moc{ACCE} $\}$ \dusa{icl1} \dusa{icl2} $]~[$ \moc{IRAM} \dusa{blsz} \dusa{korg}
$[$ \dusa{nstard} $[$ \moc{EPSG} \dusa{epsmsr} $]~]~]$ \\
$[$ \moc{EXTE}  $[$ \dusa{maxout} $]~[$ \dusa{epsout} $]~]$ \\
$[$ \moc{THER}  $[$ \dusa{maxthr} $]~[$ \dusa{epsthr} $]~]$ \\
$[$ \moc{ADI} \dusa{nadi} $]$ \\
$[$ \moc{ADJ} $]$ \\
$[$ \moc{MONI} \dusa{lmod} $[$ \moc{RAND} $]$ $]$ \\
$[$ \moc{RELAX} \dusa{relax} $]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing  in module {\tt FLUD:}.
=0 for no print; =1 for minimum printing (default value); =2 iteration history
is printed; =3 the solution is printed; =4 at each iteration, the new solution
is compared to a reference solution previously stored in \dusa{FLUX} under
name {\tt REF}; =5 the convergence histogram is stored in \dusa{FLUX}.

\item[\moc{VAR1}] keyword used to set the parameters \dusa{icl1} and \dusa{icl2}. These parameter are used with the symmetrical variational acceleration technique (SVAT) for convergence of the generalized eigenvalue problem (default option) and to accelerate up-scattering iterations.

\item[\moc{ACCE}] alias keyword for \moc{VAR1}.

\item[\dusa{icl1}] number of free outer iterations in a cycle of the variational acceleration technique.
The default value is \dusa{icl1} $=3$.

\item[\dusa{icl2}] number of accelerated outer iterations  in a cycle of the
variational acceleration technique. The default value is \dusa{icl2} $=3$. A convergence in free iterations is
obtained by setting \dusa{icl1} $=200$ (or \dusa{icl1} $=$ \dusa{maxout}) and \dusa{icl2} $=0$.

\item[\moc{IRAM}] keyword used to to switch on the implicit restarted Arnoldi method (IRAM) and to
set the parameters \dusa{blsz}, \dusa{korg} and \dusa{nstard}.\cite{iram} By default, the symmetrical variational acceleration technique (SVAT) is used.

\item[\dusa{blsz}] block size of the Arnoldi Hessenberg matrix. \dusa{blsz} is the number of fixed-source Boltzmann transport
equations solved similtaneously at each iteration of the implicit restarted Arnoldi method. The recommended value is \dusa{blsz} $=3$.

\item[\dusa{korg}] number of desired eigenvalues with \dusa{korg} $\ge$ \dusa{blsz}.

\item[\dusa{nstard}] number of iterations before restarting with the GMRES(m) acceleration method for solving the ADI-preconditionned linear systems in Trivac. The maximum number of GMRES iterations is set to \dusa{nadi}. By default, GMRES(m) acceleration is not used and \dusa{nadi} free iterations are performed.

\item[\moc{EPSG}] keyword to specify the inner iteration GMRES epsilon.

\item[\dusa{epsmsr}] convergence criterion for the inner iteration GMRES iterations. The
fixed default value is \dusa{epsmsr} $=1.0\times 10^{-6}$.

\item[\moc{EXTE}] keyword to specify that the control parameters for the
external iteration are to be modified. 

\item[\dusa{maxout}] maximum number of external iterations. The fixed default
value is \dusa{maxout} $=200$.

\item[\dusa{epsout}] convergence criterion for the external iterations. The
fixed default value is \dusa{epsout} $=1.0\times 10^{-4}$. The outer iterations are stopped when the following criteria is reached:
$$\max_i | \Phi_i^{(k-1)} - \Phi_i^{(k)} | \ \le \ epsout \times \max_i | \Phi_i^{(k)} |$$
\noindent where $\vec\Phi^{(k)}={\rm col}\{\Phi_i^{(k)} \ ; \ i=1,I\}$ is the product of the $B$ matrix times the unknown vector at the $k$-th outer iteration.

\item[\moc{THER}] keyword to specify that the control parameters for the
thermal iterations are to be modified.

\item[\dusa{maxthr}] maximum number of thermal iterations. The fixed default
value is \dusa{maxthr} $=0$ corresponding to no thermal iterations.

\item[\dusa{epsthr}] convergence criterion for the thermal iterations. The
fixed default value is \dusa{epsthr} $=1.0\times 10^{-5}$.

\item[\moc{ADI}] keyword used to set the number of alternating direction implicit (ADI) inner iterations in cases where Trivac is used.
This keyword is also used to set the number of flux iterations over Legendre orders with $SP_n$ Bivac and Trivac cases if $n\ge 3$.

\item[\dusa{nadi}] number of ADI inner or Legendre order iterations per outer iteration. The default value is $nadi=1$. If this value causes a failure of the acceleration process, it is recommended that a larger value be tried. The optimal
choice is generally the minimum value of $nadi$ which allows a convergence in
less than 75 outer iterations. $nadi=1$ or $nadi=2$ is generally the best
choice for production-type calculations. The greater $nadi$ is, the smaller 
the asymptotic convergence constant (ACC) becomes. Taking an arbitrary large
value (e.g., $nadi=20$) leads to numerical results identical to those of the
inverse power method where the system matrices are accurately inverted at each
outer iteration (at a prohibitive CPU cost). In this case, the ACC is almost
equal to the dominance ratio of the iterative matrix. The default value is
recovered in the state vector of the {\sc tracking} object \dusa{TRACK}.

\item[\moc{ADJ}] keyword used to obtain the solution to both the direct and adjoint eigenvalue problems.
The adjoint solution is required if we subsequently want to perform a perturbation calculation. This option is limited to Trivac.

\item[\moc{MONI}] keyword used to obtain the first harmonics of the solution and to set \dusa{lmod}. {\sl A full core representation of the reactor should be used to compute its harmonics. If symmetries are set in the geometry, some harmonics may be skipped. If the reactor is symmetric, a uniform initial estimate of the harmonics may cause some harmonics to be skipped; the keyword \moc{RAND} should therefore be used.}

\item[\dusa{lmod}] the $lmod$ first bi-orthonormalized harmonics of the solution are computed using the SVAT-accelerated preconditioned power method with a Hotelling deflation procedure.\cite{wilkinson}

\item[\moc{RAND}] keyword used to initialize the harmonics  calculations
(option \moc{MONI}) with a random estimate rather than a uniform estimate.
This option has no effect if \dusa{FLUX} appears on the RHS.

\item[\moc{RELAX}] keyword used to set the relaxation parameter. This keyword must be specified each time a relaxation is required.

\item[\dusa{relax}] relaxation parameter selected in the interval $0<$ \dusa{relax} $\le 1.0$ and used to update
the flux information in the \dusa{FLUX} object. The updated value is taken equal to
$(1.0-$\dusa{relax}$)$ times the previous value (given in the RHS \dusa{FLUX} object) plus \dusa{relax} times the value computed within current {\tt FLUD:} call.
The default value is \dusa{relax} $=1.0$.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt DELTA:} module}

The {\tt DELTA:} module is used to compute the source components of a fixed source eigenvalue problem corresponding to a set of 
unperturbed and perturbation system matrices (type {\tt L\_SYSTEM}).

In the direct case, the fixed source is computed as:
\begin{equation}
\vec S=\left( \delta\shadowA - \lambda_o \, \delta \shadowB\right) \vec \Phi - \delta \lambda \, \shadowB_o\vec \Phi
\end{equation}
\noindent where the direct source vector $\vec S$ is orthogonal to the unperturbed adjoint flux $\Phi^*$.

In the adjoint case, the fixed source is computed as:
\begin{equation}
\vec S^*=\left( \delta \shadowA^\top - \lambda_o \, \delta \shadowB^\top\right) \vec \Phi^*- \delta \lambda \, \shadowB_o^\top\vec \Phi^*
\end{equation}
\noindent where the adjoint source vector $\vec S^*$ is orthogonal to the unperturbed direct flux $\Phi$ and where $\delta \lambda$ is the perturbation of the eigenvalue, as computed from the Rayleigh ratio.

The calling specifications are:

\begin{DataStructure}{Structure \dstr{DELTA:}}
\dusa{GPT} \moc{:=} \moc{DELTA:} $[$ \dusa{GPT} $]$ \dusa{FLUX0} \dusa{SYST0} \dusa{DSYST} \dusa{TRACK} \moc{::} \dstr{delta\_data}
\end{DataStructure}

\goodbreak
\noindent where

\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{GPT}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SOURCE}) containing the fixed source. If
\dusa{GPT} appears on the RHS, this information is used to initialize the state vector.

\item[\dusa{FLUX0}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing the unperturbed flux.

\item[\dusa{SYST0}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) containing the unperturbed system matrices.

\item[\dusa{DSYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) containing a perturbation to the system matrices.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing the {\sc tracking}.

\item[\dstr{delta\_data}] structure containing the data to module {\tt DELTA:} (see Sect.~\ref{sect:delta_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt DELTA:}}\label{sect:delta_data}

\begin{DataStructure}{Structure \dstr{delta\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{ADJ} $]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing in module {\tt DELTA:}.

\item[\moc{ADJ}] keyword used to set the source on an adjoint fixed source eigenvalue problem.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt GPTFLU:} module}

The {\tt GPTFLU:} module is used to compute the solution to a fixed source eigenvalue
problem corresponding to a set of unperturbed system matrices and sources vectors.

If $\vec S$ is the source term of the explicit generalized adjoint equation, this
module will solve:
\begin{equation}
\left( \shadowA_o - \lambda_o \, \shadowB_o\right) \vec \Gamma_{i} = \vec S_{i}
\end{equation}
\noindent where the direct source vector $\vec S_{i}$ is orthogonal to the adjoint flux.

If $\vec S$ is the source term of the implicit generalized adjoint equation, this
module will solve:
\begin{equation}
\left( \shadowA_o^\top - \lambda_o \, \shadowB_o^\top\right) \vec \Gamma_{j}^* = \vec S_{j}^{*}
\end{equation}
\noindent where the adjoint source vector $\vec S_{j}^*$ is orthogonal to the direct flux.

The calling specifications are:

\begin{DataStructure}{Structure \dstr{GPTFLU:}}
\dusa{FLUX\_GPT} \moc{:=} \moc{GPTFLU:} $[$ \dusa{FLUX\_GPT} $]$ \dusa{GPT} \dusa{FLUX0} \dusa{SYST} \dusa{TRACK} \moc{::} \dstr{gptflu\_data}
\end{DataStructure}

\goodbreak
\noindent where

\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{FLUX\_GPT}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing the GPT solution. If \dusa{FLUX\_GPT} appears on the RHS, the solution previously stored in \dusa{FLUX\_GPT} is used to initialize the new iterative process; otherwise, a uniform unknown vector is used.

\item[\dusa{GPT}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SOURCE}) containing the fixed sources.

\item[\dusa{FLUX0}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing the unperturbed flux used to decontaminate the GPT solution.

\item[\dusa{SYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) containing the unperturbed system matrices.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing the {\sc tracking}.

\item[\dstr{gptflu\_data}] structure containing the data to module {\tt GPTFLU:}\label{sect:gptflu_data}.

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt GPTFLU:}}\label{sect:gptflu_data}

\begin{DataStructure}{Structure \dstr{gptflu\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[~\{$ \moc{VAR1} $|$ \moc{ACCE} $\}$ \dusa{icl1} \dusa{icl2} $]~[$ \moc{GMRES} \dusa{nstart} $]$ \\
$[$ \moc{EXTE}  $[$ \dusa{maxout} $]~[$ \dusa{epsout} $]~]$ \\
$[$ \moc{THER}  $[$ \dusa{maxthr} $]~[$ \dusa{epsthr} $]~]$ \\
$[$ \moc{ADI} \dusa{nadi} $]$ \\
$[$ \{ \moc{EXPLICIT} $|$ \moc{IMPLICIT} \} $]$ \\
\moc{FROM-TO} $\{$ \moc{ALL} $|$ \dusa{$i_{src1}$} \dusa{$i_{src2}$} $\}$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control  the printing in module {\tt GPTFLU:}.
=0 for no print; =1 for minimum printing (default value); =2 iteration history
is printed; =3 the solution is printed; =4 at each iteration, the new solution
is compared to a reference solution previously stored in \dusa{FLUX\_GPT} under
the name {\tt REF}; =5 the convergence histogram is stored in \dusa{FLUX\_GPT}.

\item[\moc{VAR1}] keyword used to set the parameters \dusa{icl1} and \dusa{icl2}. These parameter are used with the variational acceleration technique for convergence of the fixed-source iterations (default option) and to accelerate up-scattering iterations.

\item[\moc{ACCE}] alias keyword for \moc{VAR1}.

\item[\dusa{icl1}] number of free outer iterations in a cycle of the variational acceleration technique. The default value is \dusa{icl1} $=3$.

\item[\dusa{icl2}] number of accelerated outer iterations in a cycle of the variational acceleration technique. The default value is \dusa{icl2} $=3$. A convergence in free iterations is obtained by setting \dusa{icl1} $=200$ (or \dusa{icl1} $=$ \dusa{maxout}) and \dusa{icl2} $=0$.

\item[\moc{GMRES}] keyword to switch on the GMRES(m) acceleration of the fixed-source iterations. By default, the variational acceleration technique is used.

\item[\dusa{nstart}] restarts the GMRES method every \dusa{nstart} outer iterations. The recommended value is \dusa{nstart} $=10$.

\item[\moc{EXTE}] keyword to specify that the control parameters for the
external iteration are to be modified. 

\item[\dusa{maxout}] maximum number of external iterations. The fixed default
value is \dusa{maxout} $=200$.

\item[\dusa{epsout}] convergence criterion for the external iterations. The
fixed default value is \dusa{epsout} $=1.0\times 10^{-4}$. The outer iterations are stopped when the following criteria is reached:
$$\max_i | \Gamma_i^{(k-1)} - \Gamma_i^{(k)} | \ \le \ epsout \times \max_i | \Gamma_i^{(k)} |$$
\noindent where $\vec\Gamma^{(k)}={\rm col}\{\Gamma_i^{(k)} \ ; \ i=1,I\}$ is the product of the $\shadowB$ matrix times the unknown vector at the $k$-th outer iteration.

\item[\moc{THER}] keyword to specify that the control parameters for the
thermal iterations are to be modified.

\item[\dusa{maxthr}] maximum number of thermal iterations. The fixed default
value is \dusa{maxthr} $=0$ corresponding to no thermal iterations.

\item[\dusa{epsthr}] convergence criterion for the thermal iterations. The
fixed default value is \dusa{epsthr} $=1.0\times 10^{-2}$.

\item[\moc{ADI}] keyword used to set \dusa{nadi} in cases where Trivac is used.

\item[\dusa{nadi}] number of alternating  direction implicit (ADI) inner
iterations per outer iteration. The default value is $nadi=1$. If this value causes a failure of the acceleration process, it is recommended that a larger value be tried. The optimal
choice is generally the minimum value of $nadi$ which allows a convergence in
less than 75 outer iterations. $nadi=1$ or $nadi=2$ is generally the best
choice for production-type calculations. The greater $nadi$ is, the smaller 
the asymptotic convergence constant (ACC) becomes. Taking an arbitrary large
value (e.g., $nadi=20$) leads to numerical results identical to those obtained by
inverting the system matrices at each
outer iteration (at a prohibitive CPU cost). In this case, the ACC is almost
equal to the dominance ratio of the iterative matrix.

\item[\moc{EXPLICIT}] keyword used to obtain the solution of an direct fixed source eigenvalue problem.

\item[\moc{IMPLICIT}] keyword used to obtain the solution of an adjoint fixed source eigenvalue problem. If neither
'\moc{EXPLICIT}' nor '\moc{IMPLICIT}' are provided the default value will be chosen as a function of $n_{var}$ and $n_{cst}+1$.

\item[\moc{FROM-TO}] keyword used to specify the numbers of the sources for which a generalized adjoint will be calculated.

\item[\moc{ALL}] keyword used to recover all sources available in \dusa{GPT}.

\item[\dusa{$i_{src1}$}] number of the first source.

\item[\dusa{$i_{src1}$}] number of the last source.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt OUT:} module}

The {\tt OUT:} module is used to compute the reaction rates and to store them in an extended {\sc macrolib} (type {\tt L\_MACROLIB}) corresponding to a solution (type {\tt L\_FLUX}) of the matrix system. The calling specifications are:

\begin{DataStructure}{Structure \dstr{OUT:}}
\dusa{MACRO2} \moc{:=} \moc{OUT:} $[$ \dusa{MACRO2} $]$ \dusa{FLUX} \dusa{TRACK} \dusa{MACRO} \dusa{GEOM} \moc{::} \dstr{out\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{MACRO2}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the extended {\sc macrolib}.

\item[\dusa{FLUX}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing a solution.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing a {\sc tracking}.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the reference {\sc macrolib}.

\item[\dusa{GEOM}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_GEOM}) containing the reference {\sc geometry}.

\item[\dstr{out\_data}] structure containing the data to module {\tt OUT:}\label{sect:out_data}.

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt OUT:}}\label{sect:out_data}

\begin{DataStructure}{Structure \dstr{out\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{MODE} \dusa{imode} $]$ \\
$[~\{$ \moc{DIRE} $|$ \moc{PROD} $\}~]$ \\
$[~\{$ \moc{POWR} \dusa{power} $|$ \moc{FISS} \dusa{number} $|$ \moc{SOUR} \dusa{snumb} $\}~]$ \\
$[$ \moc{COND} $[~\{$ \moc{NONE} $|$ (\dusa{icond}(i), i=1,ngcond) $\}~]~]$ \\
$[$ \moc{INTG} $\{$ \moc{NONE} $|$ \moc{IN} $|$ \moc{MIX} $|$ (\dusa{ihom}(i), i=1,nreg) $\}~]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing in module {\tt OUT:}. =0 for no print; =1 for minimum printing (default value).

\item[\moc{MODE}] keyword to specify the flux harmonic index \dusa{imode}.

\item[\dusa{imode}] index of the flux harmonic recovered by the {\tt OUT:} module if the {\tt MONI} keyword was set in module {\tt FLUD:}
(see Sect.~\ref{sect:fld_data}). By default, it is assumed that the {\tt MONI} keyword was not used.

\item[\moc{DIRE}] use the direct flux to perform homogenization and/or condensation (default option).

\item[\moc{PROD}] use the product of adjoint and direct fluxes to perform homogenization and/or condensation.

\item[\moc{POWR}] keyword used to set \dusa{power}.

\item[\dusa{power}] value of the power in MW used to normalize the flux. By default, the flux is not normalized.

\item[\moc{FISS}] keyword used to set \dusa{number}.

\item[\dusa{number}] number of secondary neutrons produced by fission. This value may be set to 1.0 to obtain the
legacy power method normalization. By default, the flux is not normalized.

\item[\moc{SOUR}] keyword used to set \dusa{snumb}.

\item[\dusa{snumb}] number of source particles used to normalize the flux. By default, the flux is not normalized.

\item[\moc{COND}] keyword to specify that a group condensation of the flux is
to be performed. By default, no group condensation of the flux is
to be performed, so that \dusa{ngcond}$=$\dusa{ngroup}.

\item[\dusa{icond}] array of increasing energy group limits that will be associated with
each of the \dusa{ngcond} condensed groups. We must have \dusa{ngcond}$\le$\dusa{ngroup}. By default, if \moc{COND} is set
and \dusa{icond} is not set, all energy groups are condensed together.

\item[\moc{NONE}] keyword to specify that no group condensation of the flux is
to be performed, so that \dusa{ngcond}$=$\dusa{ngroup} (default option).

\item[\moc{INTG}] keyword used to compute the reaction rates.

\item[\moc{NONE}] keyword for computing the reaction rates on the geometry mesh (see Sect.~\ref{sect:geo_data1}) after mesh-splitting.

\item[\moc{IN}] keyword for computing the reaction rates on the geometry mesh (see Sect.~\ref{sect:geo_data1}) before mesh-splitting.

\item[\moc{MIX}] keyword for computing the reaction rates on the mixture mesh previously used to define the geometry (see Sect.~\ref{sect:geo_data1}) before mesh-splitting.

\item[\dusa{ihom}] index of the homogenized region corresponding to the each region of the geometry (see Sect.~\ref{sect:geo_data1}) before mesh-splitting.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt ERROR:} module}

The {\tt ERROR:} module is used to compare reaction rates contained into two extended {\sc macrolibs} and to print statistics regarding the comparison.

\vskip 0.2cm

The QUANDRY-type power densities are first compared. These power densities are defined by the following relation:

$$P^{\rm quandry}_i={\sum\limits_i V_i \over V_i} {P_i \over \sum\limits_i P_i}$$

\noindent where $P_i$ is the total power and $V_i$ is the volume of the  region $i$. The maximum and averaged errors are respectively defined by:

$$\epsilon_{\rm max}=\max_i {|P_i^{\rm quandry}-P_i^{{\rm quandry}*}| \over P_i^{{\rm quandry}*}}$$

\noindent and

$$\bar\epsilon = {1 \over V_{\rm core}} \sum_i \left[ {|P_i^{\rm quandry}-P_i^{{\rm quandry}*}| \over P_i^{{\rm quandry}*}}\right] V_i$$

\noindent where $P_i^{{\rm quandry}*}$ is computed using the reference powers (stored in \dusa{MACRO1}) and $V_{\rm core}$ is the total volume of the regions where the power density is not equal to zero.

\vskip 0.2cm

The normalized removal rates $T_{i,g}^{\rm norm}$ in each region $i$ and energy group $g$ are next computed using the following formula:

$$T_{i,g}=(\Sigma_{i,g} -\Sigma_{{\rm w}i,g}) \ \phi_{i,g} V_i$$

$$T_{i,g}^{\rm norm}={1 \over \sum\limits_i \sum\limits_g T_{i,g}} \ T_{i,g}$$

\noindent where $\Sigma_{i,g}$ is the total macroscopic cross section, $\Sigma_{{\rm w}i,g}$ is the within-group scattering cross section and $\phi_{i,g}$ is the neutron flux. The maximum and averaged errors are respectively defined by:

$$\epsilon_{{\rm max} \ g}=\max_i {|T_{i,g}^{\rm norm}-T_{i,g}^{{\rm norm}*}| \over T_{i,g}^{{\rm norm}*}}$$

\noindent and

$$\bar\epsilon_g = {1 \over N} \sum_i \left[ {|T_{i,g}^{\rm norm}-T_{i,g}^{{\rm norm}*}| \over T_{i,g}^{{\rm norm}*}}\right]$$

\noindent where $T_{i,g}^{{\rm norm}*}$ is computed using the reference values (stored in \dusa{MACRO1}) and $N$ is the total number of regions in the {\sc macrolib}.

\vskip 0.2cm
\goodbreak

The calling specifications are:

\begin{DataStructure}{Structure \dstr{ERROR:}}
\moc{ERROR:} \dusa{MACRO1} \dusa{MACRO2} \moc{::} $[$ \moc{HREA} \dusa{hname} $]~[$ \moc{NREG} \dusa{nreg} $]$ ;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{MACRO1}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the extended {\sc macrolib} used to compute the reference reaction rates.

\item[\dusa{MACRO2}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the extended {\sc macrolib} used to compute the approximate reaction rates.

\item[\moc{HREA}] keyword used to set the character name \dusa{hname}.

\item[\dusa{hname}] character*8 name of the nuclear reaction used to compute the power map. By default, reaction {\tt H-FACTOR} is used.

\item[\moc{NREG}] keyword used to set the \dusa{nreg} number.

\item[\dusa{nreg}] integer number set to the number of regions used in statistics. By default, all available regions are used.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt INIKIN:} module}\label{sect:inikin}

The {\tt INIKIN:} module is used  to recover the steady-state solution and to initialize the kinetics parameters.
The delayed neutron information can be provided directly from the input file or recovered from the {\sc macrolib}
data structure.

The initial presursor concentrations are obtained as a function of the strady-state solution. If $\phi_g(\bff(r),t_0)$ is
the initial flux in energy group $g$ divided by $k_{\rm eff}$, the corresponding initial conditions of the precursors are obtained as
\begin{equation}
c_{\ell}(\bff(r),t_0)={1 \over \lambda_\ell} \sum_{h=1}^G \nu\Sigma_{{\rm f}\ell,h}^{\rm del}(\bff(r)) \, \phi_h(\bff(r),t_0) ; \ \ \ \ell=1,N_d .
\label{eq:eq_inikin_1}
\end{equation}

\noindent where $\nu\Sigma_{{\rm f}\ell,h}^{\rm del}(\bff(r))$ is $\nu$ times the delayed macroscopic fission cross section in energy group
$h$ for precursor group $\ell$.

The calling specifications are:

\begin{DataStructure}{Structure \dstr{INIKIN:}}
\dusa{KINET} \moc{:=} \moc{INIKIN:} \dusa{MACRO} \dusa{TRACK} \dusa{SYST} \dusa{FLUX} \moc{::} \dstr{inikin\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{KINET}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_KINET}) to be created by the module.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the {\sc macrolib} information.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing the {\sc tracking} information.

\item[\dusa{SYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) corresponding to {\sc macrolib} \dusa{MACRO}
and {\sc tracking} \dusa{TRACK}.

\item[\dusa{FLUX}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing the initial steady-state solution.

\item[\dstr{inikin\_data}] structure containing the data to module {\tt INIKIN:} (see Sect.~\ref{sect:inikin_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt INIKIN:}}\label{sect:inikin_data}

\begin{DataStructure}{Structure \dstr{inikin\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{NGRP} \dusa{ngrp} $]$ \\
~\moc{NDEL} \dusa{ndg} \\
$[$ \moc{BETA} (\dusa{beta}(i),    i=1,\dusa{ndg}) $]$ \\
$[$ \moc{LAMBDA} (\dusa{lambda}(i),    i=1,\dusa{ndg}) $]$ \\
$[$ \moc{CHID} ((\dusa{chid}(i),    i=1,\dusa{ndg}), j=1,\dusa{ngrp}) $]$ \\
$[$ \moc{NORM} $\{$ \dusa{fnorm} $|$ \moc{MAX} $|$ \moc{POWER-INI} \dusa{power} $\}~]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint} index.

\item[\dusa{iprint}] integer index used to control  the printing in module {\tt INIKIN:}.
=0 for no print; =1 for minimum printing (default value); larger values of \dusa{iprint}
will produce increasing amounts of output.

\item[\moc{NGRP}] keyword used to set the \dusa{ngrp} number. By default, this information is recovered from the solution object
\dusa{FLUX}.

\item[\dusa{ngrp}] integer total number of energy groups.

\item[\moc{NDEL}] keyword used to set the \dusa{ndg} number.

\item[\dusa{ndg}] integer total number of the delayed neutron groups.

\item[\moc{BETA}] keyword used to indicate the reading of \dusa{beta} values from the input file.
If these values are not provided, they should be recorded in the {\sc macrolib} data structure.

\item[\dusa{beta}] real array containing the delayed neutron fractions for each delayed group.

\item[\moc{LAMBDA}] keyword used to indicate the reading of \dusa{lambda} values from the input file.
If these values are not provided, they should be recorded in the {\sc macrolib} data structure.

\item[\dusa{lambda}] real array containing the precursors decay constants for each delayed group.

\item[\moc{CHID}] keyword used to indicate the reading of \dusa{chid} values from the input file.
If these values are not provided, they should be recorded in the {\sc macrolib} data structure.

\item[\dusa{chid}] real array representing the delayed multigroup fission spectrum.

\item[\moc{NORM}] keyword used to normalize the initial flux. By default, the flux is not normalized.

\item[\dusa{fnorm}] real normalization factor.

\item[\moc{MAX}] keyword used to set the flux normalization factor to $1/f_{\rm max}$ where $f_{\rm max}$ is
the maximum flux in the core.

\item[\moc{POWER-INI}] keyword used to set the flux normalization factor to a given value of the initial power.

\item[\dusa{power}] real initial power in MW.

\end{ListeDeDescription}
\clearpage

\subsection{The {\tt KINSOL:} module}\label{sect:kinsol}

The {\tt KINSOL:} module is used  to solve the space-time neutron kinetics equations at current time step of transient.

\subsubsection{The direct (forward) solution}

We first consider the discretization of the legacy forward space-time kinetics equation. Several implicit numerical schemes are available for this purpose.
Consider first the differential equation for precursor concentrations:
\begin{equation}
{\partial c_{\ell}(\bff(r),t) \over \partial t}+\lambda_\ell \, c_{\ell}(\bff(r),t) =\sum_{h=1}^G \nu\Sigma_{{\rm f}\ell,h}^{\rm del}(\bff(r)) \, \phi_h(\bff(r),t); \ \ \
\ell=1,N_d.
\label{eq:eq_inikin_2}
\end{equation}

Consider a solution between times $t_{n-1}$ and $t_{n}=t_{n-1}+\Delta t_n$. First, an analytic solution can be obtained by assuming a ramp
variation of the fission reaction rates over time step $\Delta t_n$. This solution is written
\begin{eqnarray}
\nonumber c_{\ell}(\bff(r),t_n)\negthinspace\negthinspace&=&\negthinspace\negthinspace c_{\ell}(\bff(r),t_{n-1}) \, {\rm e}^{-\lambda_\ell \, \Delta t_n}+{F_\ell(\bff(r),t_{n-1})\over \lambda_\ell} \left[
{1\over\lambda_\ell \, \Delta t_n}\left( 1- {\rm e}^{-\lambda_\ell \, \Delta t_n}\right)-{\rm e}^{-\lambda_\ell \, \Delta t_n} \right] \\
&+&\negthinspace\negthinspace {F_\ell(\bff(r),t_n)\over \lambda_\ell} \left[ 1-{1\over\lambda_\ell \, \Delta t_n}\left( 1- {\rm e}^{-\lambda_\ell \, \Delta t_n}\right) \right] 
\label{eq:eq_inikin_3}
\end{eqnarray}

\noindent where the delayed fission reaction rates are defined as
\begin{eqnarray}
F_\ell(\bff(r),t_{n})=\sum_{h=1}^G \nu\Sigma_{{\rm f}\ell,h}^{\rm del}(\bff(r)) \, \phi_h(\bff(r),t_n)=\beta_\ell \sum_{h=1}^G \nu\Sigma_{{\rm f}h}(\bff(r)) \, \phi_h(\bff(r),t_n) .
\label{eq:eq_inikin_4}
\end{eqnarray}

An {\sl implicit theta solution} is presented in Chapter~5 of Ref.~\citen{PIP2009}. This solution is written
\begin{eqnarray}
\nonumber c_{\ell}(\bff(r),t_n)\negthinspace\negthinspace&=&\negthinspace\negthinspace \left[ {1-(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n }\right] c_{\ell}(\bff(r),t_{n-1}) +{F_\ell(\bff(r),t_{n-1})\over \lambda_\ell} \left[{(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n\over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n } \right]  \\
&+&\negthinspace\negthinspace{F_\ell(\bff(r),t_n)\over \lambda_\ell}  \left[{ \Theta_{\rm p} \, \lambda_\ell \,\Delta t_n\over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n}  \right] 
\label{eq:eq_inikin_5}
\end{eqnarray}

\noindent where $\Theta_{\rm p}$ is the theta-factor for precursors.

The fixed-source corresponding to the analytic solution for precursors is written
\begin{eqnarray}
\nonumber S_g^{\rm exact}(\bff(r),t_n)\negthinspace\negthinspace&=&\negthinspace\negthinspace{1\over V_{{\rm n},g}\, \Delta t_n} \,\phi_g(\bff(r),t_{n-1}) + \sum_\ell\lambda_\ell \left[ 1- \Theta_{\rm f}+ \Theta_{\rm f} \, {\rm e}^{-\lambda_\ell \, \Delta t_n}\right]\chi_{\ell,g}^{\rm del}(\bff(r)) \, c_\ell(\bff(r),t_{n-1})\\
\nonumber &+& \negthinspace\negthinspace(1- \Theta_{\rm f})\bigg\{\bff(\nabla) \cdot \shadowD_g(\bff(r)) \bff(\nabla) \phi_g(\bff(r),t_{n-1}) - \Sigma_{{\rm r}g}(\bff(r)) \, \phi_g(\bff(r),t_{n-1}) \\
\nonumber&+&\negthinspace\negthinspace \sum_{{h=1} \atop {h \not= g}}^G \Sigma_{g \leftarrow h}(\bff(r)) \, \phi_h(\bff(r),t_{n-1})+\chi_g^{\rm ss}(\bff(r))\, F(\bff(r),t_{n-1})\bigg\} \\
&-& \negthinspace\negthinspace \sum_\ell \left[1- \Theta_{\rm f}- \Theta_{\rm f}  \left(
{1\over\lambda_\ell \, \Delta t_n}\left( 1- {\rm e}^{-\lambda_\ell \, \Delta t_n}\right)-{\rm e}^{-\lambda_\ell \, \Delta t_n} \right) \right] \chi_{\ell,g}^{\rm del}(\bff(r)) \, F_\ell(\bff(r),t_{n-1})
\label{eq:eq_inikin_6}
\end{eqnarray}

\noindent where the steady-state fission reaction rates are defined as
\begin{eqnarray}
F(\bff(r),t_{n})=\sum_{h=1}^G \nu\Sigma_{{\rm f}h}(\bff(r)) \, \phi_h(\bff(r),t_n) .
\label{eq:eq_inikin_7}
\end{eqnarray}

The fixed-source corresponding to the implicit theta solution is presented in Chapter~5 of Ref.~\citen{PIP2009} and is written
\begin{eqnarray}
\nonumber S_g^\Theta(\bff(r),t_n)\negthinspace\negthinspace&=&\negthinspace\negthinspace{1\over V_{{\rm n},g}\, \Delta t_n} \,\phi_g(\bff(r),t_{n-1}) + \sum_\ell\lambda_\ell \left[ 1- \Theta_{\rm f}+ \Theta_{\rm f} \,  {1-(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n }\right]\chi_{\ell,g}^{\rm del}(\bff(r)) \, c_\ell(\bff(r),t_{n-1})\\
\nonumber &+& \negthinspace\negthinspace(1- \Theta_{\rm f})\bigg\{\bff(\nabla) \cdot \shadowD_g(\bff(r)) \bff(\nabla) \phi_g(\bff(r),t_{n-1}) - \Sigma_{{\rm r}g}(\bff(r)) \, \phi_g(\bff(r),t_{n-1}) \\
\nonumber&+&\negthinspace\negthinspace \sum_{{h=1} \atop {h \not= g}}^G \Sigma_{g \leftarrow h}(\bff(r)) \, \phi_h(\bff(r),t_{n-1})+\chi_g^{\rm ss}(\bff(r))\, F(\bff(r),t_{n-1})\bigg\} \\
&-& \negthinspace\negthinspace \sum_\ell \left[1- \Theta_{\rm f}- \Theta_{\rm f} \, {(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n } \right] \chi_{\ell,g}^{\rm del}(\bff(r)) \, F_\ell(\bff(r),t_{n-1}) .
\label{eq:eq_inikin_8}
\end{eqnarray}

The flux equation at end-of-step is now presented. The equation corresponding to the analytic solution for precursors is written
\begin{eqnarray}
\nonumber&~&{1\over V_{{\rm n},g}\, \Delta t_n} \, \phi_g(\bff(r),t_n) - \Theta_{\rm f} \, \bff(\nabla) \cdot \shadowD_g(\bff(r)) \bff(\nabla) \phi_g(\bff(r),t_n) + \Theta_{\rm f} \, \Sigma_{{\rm r}g}(\bff(r)) \, \phi_g(\bff(r),t_n) \\
\nonumber&~& \ \ \ \ \ \ = \, S_g^{\rm exact}(\bff(r),t_n)+ \Theta_{\rm f} \, \sum_{{h=1} \atop {h \not= g}}^G \Sigma_{g \leftarrow h}(\bff(r)) \, \phi_h(\bff(r),t_n)\\
&~& \ \ \ \ \ \ + \ \Theta_{\rm f} \, \chi_g^{\rm ss}(\bff(r)) \, F(\bff(r),t_{n}) -\Theta_{\rm f} \sum_\ell \chi_{\ell,g}^{\rm del}(\bff(r)) \, {1\over\lambda_\ell \, \Delta t_n}\left( 1- {\rm e}^{-\lambda_\ell \, \Delta t_n}\right) F_\ell(\bff(r),t_{n}) .
\label{eq:eq_inikin_9}
\end{eqnarray}

The equation corresponding to the implicit theta solution is presented in Chapter~5 of Ref.~\citen{PIP2009} and is written
\begin{eqnarray}
\nonumber&~&{1\over V_{{\rm n},g}\, \Delta t_n} \, \phi_g(\bff(r),t_n) - \Theta_{\rm f} \, \bff(\nabla) \cdot \shadowD_g(\bff(r)) \bff(\nabla) \phi_g(\bff(r),t_n) + \Theta_{\rm f} \, \Sigma_{{\rm r}g}(\bff(r)) \, \phi_g(\bff(r),t_n) \\
\nonumber&~& \ \ \ \ \ \ = \, S_g^\Theta(\bff(r),t_n)+ \Theta_{\rm f} \, \sum_{{h=1} \atop {h \not= g}}^G \Sigma_{g \leftarrow h}(\bff(r)) \, \phi_h(\bff(r),t_n)\\
&~& \ \ \ \ \ \ + \ \Theta_{\rm f} \, \chi_g^{\rm ss}(\bff(r)) \, F(\bff(r),t_{n}) -\Theta_{\rm f} \sum_\ell \chi_{\ell,g}^{\rm del}(\bff(r)) \, {1 \over 1+\Theta_{\rm p} \, \lambda_\ell\, \Delta t_n} \, F_\ell(\bff(r),t_{n}) .
\label{eq:eq_inikin_10}
\end{eqnarray}

\subsubsection{The adjoint (backward) solution}

The negative sign in front of the term $(1/v) \partial\phi^*/\partial t$ suggest some sort of backward approach to compute the importance (as opposed to the direct
or forward approach for the direct neutron flux). Hence, while it is necessary to define an initial state of the system to solve the direct equations, solving the
importance equations requires final conditions and to proceed backward with respect to time.

\vskip 0.08cm

Discretization of the adjoint space-time kinetics equations using the {\sl implicit theta solution} leads to the following equations. The solution for precursors is written
\begin{eqnarray}
\nonumber c^*_{\ell}(\bff(r),t_{n-1})\negthinspace\negthinspace&=&\negthinspace\negthinspace \left[ {1-(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n}\right] c^*_{\ell}(\bff(r),t_{n}) + \left[{(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n\over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n } \right] \sum_{h=1}^G \chi_{\ell,h}^{\rm del}(\bff(r)) \, \phi^*_h(\bff(r),t_{n}) \\
&+&\negthinspace\negthinspace \left[{ \Theta_{\rm p} \, \lambda_\ell \,\Delta t_n\over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n} \right]\sum_{h=1}^G \chi_{\ell,h}^{\rm del}(\bff(r)) \, \phi^*_h(\bff(r),t_{n-1}) .
\label{eq:eq_inikin_11}
\end{eqnarray}

\goodbreak
The flux equation at beginning-of-step is written
\begin{eqnarray}
\nonumber&~&{1\over V_{{\rm n},g}\, \Delta t_n} \, \phi^*_g(\bff(r),t_{n-1}) - \Theta_{\rm f} \, \bff(\nabla) \cdot \shadowD_g(\bff(r)) \bff(\nabla) \phi^*_g(\bff(r),t_{n-1}) + \Theta_{\rm f} \, \Sigma_{{\rm r}g}(\bff(r)) \, \phi^*_g(\bff(r),t_{n-1}) \\
\nonumber&~& \ \ \ \ \ \ = \, S_g^{*\Theta}(\bff(r),t_{n-1})+ \Theta_{\rm f} \, \sum_{{h=1} \atop {h \not= g}}^G \Sigma_{h \leftarrow g}(\bff(r)) \, \phi^*_h(\bff(r),t_{n-1})\\
&~& \ \ \ \ \ \ + \ \Theta_{\rm f}\sum_{h=1}^G \left[\nu\Sigma_{{\rm f}g}(\bff(r))\, \chi_h^{\rm ss}(\bff(r)) - \sum_\ell \nu\Sigma_{{\rm f}\ell,g}^{\rm del}(\bff(r))\,\chi_{\ell,h}^{\rm del}(\bff(r))
\, {1 \over 1+\Theta_{\rm p} \, \lambda_\ell\, \Delta t_{n-1}}\right] \phi^*_h(\bff(r),t_{n-1})
\label{eq:eq_inikin_12}
\end{eqnarray}

\noindent where the fixed-source $S_g^{*\Theta}(\bff(r),t_{n-1})$ is written
\begin{eqnarray}
\nonumber S_g^{*\Theta}(\bff(r),t_{n-1})\negthinspace\negthinspace&=&\negthinspace\negthinspace{1\over V_{{\rm n},g}\, \Delta t_n} \,\phi_g(\bff(r),t_{n}) + \sum_\ell \nu\Sigma_{{\rm f}\ell,g}^{\rm del}(\bff(r)) \left[ 1- \Theta_{\rm f}+ \Theta_{\rm f} \,  {1-(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n }\right] c^*_\ell(\bff(r),t_{n})\\
\nonumber &+& \negthinspace\negthinspace(1- \Theta_{\rm f})\bigg\{\bff(\nabla) \cdot \shadowD_g(\bff(r)) \bff(\nabla) \phi^*_g(\bff(r),t_{n}) - \Sigma_{{\rm r}g}(\bff(r)) \, \phi^*_g(\bff(r),t_{n}) \\
\nonumber&+&\negthinspace\negthinspace \sum_{{h=1} \atop {h \not= g}}^G \Sigma_{h \leftarrow g}(\bff(r)) \, \phi^*_h(\bff(r),t_{n})+ \sum_{h=1}^G \nu\Sigma_{{\rm f}g}(\bff(r))\, \chi_h^{\rm ss}(\bff(r)) \, \phi^*_h(\bff(r),t_{n}) \bigg\} \\
&-& \negthinspace\negthinspace \sum_\ell \left[1- \Theta_{\rm f}- \Theta_{\rm f} \, {(1- \Theta_{\rm p}) \, \lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n } \right] \sum_{h=1}^G \nu\Sigma_{{\rm f}\ell,g}^{\rm del}(\bff(r))\,\chi_{\ell,h}^{\rm del}(\bff(r)) \, \phi^*_h(\bff(r),t_{n}) .
\label{eq:eq_inikin_13}
\end{eqnarray}

The equations corresponding to the analytic solution for precursors are obtained by replacing the following terms in Eqs.~(\ref{eq:eq_inikin_11}) to~(\ref{eq:eq_inikin_13}):
\begin{equation}
{1\over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n} \ \Rightarrow \ {1-\exp^{-\lambda_\ell \, \Delta t_n} \over \lambda_\ell \, \Delta t_n} \ \ \ {\rm and} \ \ \
{1-(1-\Theta_{\rm p}\,\lambda_\ell \, \Delta t_n \over 1+ \Theta_{\rm p}\, \lambda_\ell \, \Delta t_n} \ \Rightarrow \ \exp^{-\lambda_\ell \, \Delta t_n} .
\label{eq:eq_inikin_14}
\end{equation}
\goodbreak

\subsubsection{The calling specifications}

The calling specifications are:

\begin{DataStructure}{Structure \dstr{KINSOL:}}
\dusa{KINET} \moc{:=} \moc{KINSOL:} \dusa{KINET} \dusa{MACRO} \dusa{TRACK} \dusa{SYST} $[$ \dusa{MACRO\_0} \dusa{SYST\_0} $]$
\moc{::} \dstr{kinsol\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{KINET}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_KINET}) in modification mode.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the {\sc macrolib}
information corresponding to the current time step of a transient.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing the {\sc tracking} information.

\item[\dusa{SYST}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) corresponding to {\sc macrolib} \dusa{MACRO}
and {\sc tracking} \dusa{TRACK}.

\item[\dusa{MACRO\_0}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the {\sc macrolib}
information corresponding to the beginning-of-step conditions in case a ramp variation of the cross sections in set.
{\sl Beginning-of-step conditions should not be confused with beginning-of-transient or initial conditions.} By default,
a step variation is set where cross sections are assumed constant and given by \dusa{MACRO}.

\item[\dusa{SYST\_0}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_SYSTEM}) corresponding to {\sc macrolib} \dusa{MACRO\_0}
and {\sc tracking} \dusa{TRACK}.

\item[\dstr{kinsol\_data}] structure containing the data to module {\tt KINSOL:} (see Sect.~\ref{sect:kinsol_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt KINSOL:}}\label{sect:kinsol_data}

\begin{DataStructure}{Structure \dstr{kinsol\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
~\moc{DELTA} \dusa{delta} \\
~\moc{SCHEME}
~\moc{FLUX} $[$ \moc{TEXP} $]~\{$ \moc{IMPLIC} $|$ \moc{CRANK} $|$ \moc{THETA} \dusa{ttflx} $\}$ \\
~\moc{PREC} $\{$ \moc{IMPLIC} $|$ \moc{CRANK} $|$ \moc{EXPON} $|$ \moc{THETA} \dusa{ttprc} $\}$ \\
$[~\{$ \moc{VAR1} $|$ \moc{ACCE} $\}$ \dusa{icl1} \dusa{icl2} $]$ \\
$[$ \moc{EXTE}  $[$ \dusa{maxout} $]~[$ \dusa{epsout} $]~]$ \\
$[$ \moc{THER}  $[$ \dusa{maxthr} $]~[$ \dusa{epsthr} $]~]$ \\
$[$ \moc{ADI} \dusa{nadi} $]$ \\
$[$ \moc{ADJ} $]$ \\
$[$ \moc{PICK}  {\tt >>} \dusa{power\_out} {\tt <<} $]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint} index.

\item[\dusa{iprint}] integer index used to control  the printing in module {\tt KINSOL:}.
=0 for no print; =1 for minimum printing (default value); larger values of \dusa{iprint}
will produce increasing amounts of output.

\item[\moc{DELTA}] keyword used to set the \dusa{delta} value.

\item[\dusa{delta}] current time increment $\Delta t_n$ of transient.

\item[\moc{SCHEME}] keyword used to indicate the temporal numerical schemes.

\item[\moc{TEXP}] keyword used to enable the exponential transformation procedure on transient flux. Mixture- and group-dependent
factors $\omega_{m,g}$ are set such that the flux at point $\bff(r)$ is defined as
\begin{equation}
\phi_g(\bff(r),t)=e^{\omega_{m,g} t} \tilde\phi_g(\bff(r),t)
\label{eq:eq_kinsol_1}
\end{equation}
\noindent where $m$ is the mixture index corresponding to point $\bff(r)$. Factors $\omega_{m,g}$ are initialized to zero by module
{\tt INIKIN:} and are recomputed at the end of each time step.

\item[\moc{FLUX}] keyword used to select the temporal scheme for the fluxes equations.

\item[\moc{PREC}] keyword used to select the temporal scheme for the precursors equations.

\item[\moc{IMPLIC}] keyword used to indicate the full implicit temporal scheme.

\item[\moc{CRANK}] keyword used to indicate the Crank-Nicholson temporal scheme.

\item[\moc{EXPON}] keyword used to indicate the analytical integration scheme for precursors equations.

\item[\moc{THETA}] keyword used to indicate the general temporal scheme according to the
\dusa{theta} method.

\item[\dusa{ttflx}] value of \dusa{theta} parameter $ \Theta_{\rm f}$ for the flux equations. This value should be
greater than 0.5 and less than 1.0.

\item[\dusa{ttprc}] value of \dusa{theta} parameter $ \Theta_{\rm p}$ for the precursors equations. This value should be
greater than 0.5 and less than 1.0.

\item[\moc{VAR1}] keyword used to switch on the variational acceleration technique and to
set the parameters \dusa{icl1} and \dusa{icl2}.

\item[\moc{ACCE}] alias keyword for \moc{VAR1}.

\item[\dusa{icl1}] number of free outer iterations  in a cycle of the variational acceleration technique.
The default value is \dusa{icl1} $=3$.

\item[\dusa{icl2}] number of accelerated outer iterations  in a cycle of the
variational acceleration technique. The default value is \dusa{icl2} $=3$. A convergence in free iterations is
obtained by setting \dusa{icl1} $=200$ (or \dusa{icl1} $=maxout$) and \dusa{icl2} $=0$.

\item[\moc{EXTE}] keyword to specify that the control parameters for the
external iteration are to be modified. 

\item[\dusa{maxout}] maximum number of external iterations. The fixed default
value is \dusa{maxout} $=200$.

\item[\dusa{epsout}] convergence criterion for the external iterations. The
fixed default value is \dusa{epsout} $=1.0\times 10^{-4}$. The outer iterations are stopped when the following criteria is reached:
$$\max_i | \Phi_i^{(k-1)} - \Phi_i^{(k)} | \ \le \ epsout \times \max_i | \Phi_i^{(k)} |$$
\noindent where $\vec\Phi^{(k)}={\rm col}\{\Phi_i^{(k)} \ ; \ i=1,I\}$ is the product of the $B$ matrix times the unknown vector at the $k$-th outer iteration.

\item[\moc{THER}] keyword to specify that the control parameters for the
thermal iterations are to be modified.

\item[\dusa{maxthr}] maximum number of thermal iterations. The fixed default
value is \dusa{maxthr} $=0$ corresponding to no thermal iterations.

\item[\dusa{epsthr}] convergence criterion for the thermal iterations. The
fixed default value is \dusa{epsthr} $=1.0\times 10^{-2}$.

\item[\moc{ADI}] keyword used to set \dusa{nadi} in cases where Trivac is used.

\item[\dusa{nadi}] number of alternating direction implicit  (ADI) inner
iterations per outer iteration. The default value is $nadi=1$. If this value causes a failure of the acceleration process, it is recommended that a larger value be tried. The optimal
choice is generally the minimum value of $nadi$ which allows a convergence in
less than 75 outer iterations. $nadi=1$ or $nadi=2$ is generally the best
choice for production-type calculations. The greater $nadi$ is, the smaller 
the asymptotic convergence constant (ACC) becomes. Taking an arbitrary large
value (e.g., $nadi=20$) leads to numerical results identical to those obtained by
inverting the system matrices at each
outer iteration (at a prohibitive CPU cost). In this case, the ACC is almost
equal to the dominance ratio of the iterative matrix. The default value is
recovered in the state vector of the {\sc tracking} object \dusa{TRACK}.

\item[\moc{ADJ}] keyword used to perform an adjoint (backward) space-time kinetics calculation. By default, a direct (forward) space-time kinetics calculation
is performed.

\item[\moc{PICK}]  keyword used to recover the end-of-stage power (in MW) in a CLE-2000 variable.

\item[\dusa{power\_out}] \texttt{character*12} CLE-2000 variable name in which the extracted power value will be placed.

\end{ListeDeDescription}
\clearpage


\subsection{The {\tt VAL:} module}\label{sect:VALData}

The \moc{VAL:} module supplies an interpolation of the flux in diffusion calculations for
Cartesian geometries. This module also provide {\sl flux reconstruction} with nodal methods. The calling specifications are:

\begin{DataStructure}{Structure \dstr{VAL:}}
\dusa{IFLU} \moc{:=} \moc{VAL:} \dusa{TRKNAM} \dusa{FLUNAM} $[$ \dusa{MACRO} $]$ \moc{::} \dstr{descval} 
\end{DataStructure}

\noindent
where
\begin{ListeDeDescription}{mmmmmmmm}

\item[\dusa{IFLU}] {\tt character*12} name of the \dds{interpflux} data
structure ({\tt L\_FVIEW} signature) where the interpolated flux distribution will be stored.

\item[\dusa{TRKNAM}] {\tt character*12} name of the read-only \dds{tracking} data
structure ({\tt L\_TRACK} signature) containing the tracking. 

\item[\dusa{FLUNAM}] {\tt character*12} name of the read-only \dds{fluxunk} data
structure ({\tt L\_FLUX} signature) containing a transport solution.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the cross sections and diffusion coefficients.
This data structure is required with nodal methods and in case the \moc{POWR} keyword is set.

\item[\dstr{descval}] structure containing the input data to this module to compute interpolated flux
(see \Sect{descval}).

\end{ListeDeDescription}

\subsubsection{Data input for module {\tt VAL:}}\label{sect:descval}

\begin{DataStructure}{Structure \dstr{descval}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{MODE} \dusa{imode} $]$ \\
$[$ \moc{POWR} \dusa{power} $]$ \\
$[~\{$ \moc{NOCCOR} $|$ \moc{CCOR} $\}~]$ \\
\moc{DIM} \dusa{dim} (\dusa{dxyz}$(i)$, $i=1,dim$) \\
;
\end{DataStructure}

\noindent where

\begin{ListeDeDescription}{mmmmmmmm}

\item[\moc{EDIT}] keyword used to modify the print level \dusa{iprint}.

\item[\dusa{iprint}] integer index used to control  the printing in module {\tt VAL:}.
=0 for no print; =1 for minimum printing (default value); larger values of \dusa{iprint}
will produce increasing amounts of output.

\item[\moc{MODE}] keyword to specify the flux harmonic index \dusa{imode}.

\item[\dusa{imode}] index of the flux harmonic recovered by the {\tt VAL:} module if the {\tt MONI} keyword was set in module {\tt FLUD:}
(see Sect.~\ref{sect:fld_data}). By default, it is assumed that the {\tt MONI} keyword was not used.

\item[\moc{POWR}] keyword used to set \dusa{power}.

\item[\moc{NOCCOR}] keyword used to desactivate {\sl corner flux correction} with 2D/3D nodal methods.

\item[\moc{CCOR}] keyword used to activate {\sl corner flux correction} with 2D/3D nodal methods (default option).

\item[\dusa{power}] value of the power in MW used to normalize the flux. By default, the flux is not normalized.

\item[\moc{DIM}] keyword to specify the number \dusa{dim}.

\item[\dusa{dim}] number of dimension of the geometry. 

\item[\dusa{dxyz}] mesh interval along each direction which is used to define the grid where the flux is interpolated. 

\end{ListeDeDescription}

\clearpage

\subsection{The {\tt NSST:} module}

The {\tt NSST:} module is used to perform a {\sc tracking} for the Nodal
Expansion Method (NEM)\cite{nestle} or the Analytic Nodal Method (ANM)\cite{anm08}.

\vskip 0.08cm

The calling specifications are:

\begin{DataStructure}{Structure \dstr{NSST:}}
\dusa{TRACK} \moc{:=} \moc{NSST:} $[$ \dusa{TRACK} $]$ \dusa{GEOM}  \moc{::} \dstr{NSST\_data}
\end{DataStructure}

\goodbreak
\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{TRACK}] {\tt character*12} of the {\sc lcm} object (type {\tt L\_TRIVAC}) 
containing the {\sc tracking} information. If \dusa{TRACK} appears on the RHS, the
previous settings will be applied by default.

\item[\dusa{GEOM}] {\tt character*12} of the {\sc lcm} object (type {\tt
L\_GEOM}) containing the geometry.

\item[\dstr{NSST\_data}] structure containing the data to module {\tt NSST:} (see Sect.~\ref{sect:NSST_data}).

\end{ListeDeDescription}

\subsubsection{Data input for module {\tt NSST:}}\label{sect:NSST_data}

\begin{DataStructure}{Structure \dstr{NSST\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{TITL} \dusa{TITLE} $]$ \\
$[$ \moc{MAXR} \dusa{maxpts} $]$ \\
$[$ \moc{HYPE} \dusa{igmax} $]$ \\
$[~\{$ \moc{CMFD} $|$ \moc{NEM} $|$ \moc{ANM} $\}~]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing  in module {\tt
NSST:}. =0 for no print; =1 for minimum printing (default value); Larger
values produce increasing amounts of output.

\item[\moc{TITL}] keyword which allows the run title to be set.

\item[\dusa{TITLE}] the title associated with a nodal expansion method run. This
title may contain up to 72 characters. The default when \moc{TITL} is not specified is no title.

\item[\moc{MAXR}] keyword which permits the maximum number of regions to be considered during a nodal run to be specified.

\item[\dusa{maxpts}] maximum dimensions of the problem to be considered.  The
default value is set to the number of regions previously computed by the {\tt
GEO:} module but this value is insufficient if symmetries or mesh-splitting
are specified.

\item[\moc{HYPE}] keyword used to specify the type of nodal expansion base functions used to represent the transverse integrated flux.
By default, the polynomial base~(\ref{eq:nem1}) is used in all energy groups. This keyword has no effect with the analytic nodal method.

\item[\dusa{igmax}] hyperbolic base functions~(\ref{eq:nem2}) are used for energy groups with indices $\ge$ \dusa{igmax}.

\item[\moc{CMFD}] keyword used to impose the coarse mesh finite difference method. Only polynomials $p_0(u)$ to $p_2(u)$ are used to expand the flux.

\item[\moc{NEM}] keyword used to impose the nodal expansion method. This is the default option.

\item[\moc{ANM}] keyword used to impose the analytic nodal method.

\end{ListeDeDescription}

\clearpage

\subsection{The {\tt NSSF:} module}

The {\tt NSSF:} module is used to compute the solution to an eigenvalue problem corresponding to a nodal discretization with the Nodal
Expansion Method or the Analytic Nodal Method. The actual implementation is limited to
\begin{itemize}
\item NEM and ANM discretizations in 1D Cartesian geometries;
\item ANM discretization in 1D, 2D and 3D Cartesian geometries.
\end{itemize}

\vskip 0.08cm

The nodal expansion method (NEM) is based on an expansion of the {\sl transverse integrated flux} in terms of polynomials defined
over the $(-0.5,0.5)$ interval\cite{nestle}:
\begin{eqnarray}
\nonumber P_0(u)\negthinspace &=&\negthinspace 1\\
\nonumber P_1(u)\negthinspace &=&\negthinspace u\\
\nonumber P_2(u)\negthinspace &=&\negthinspace 3u^2-{1\over 4}\\
\nonumber P_3(u)\negthinspace &=&\negthinspace \left( u^2-{1\over 4}\right)u\\
P_4(u)\negthinspace &=&\negthinspace \left( u^2-{1\over 4}\right)\left( u^2-{1\over 20}\right)
\label{eq:nem1}
\end{eqnarray}
There is the option of using hyperbolic functions in some energy groups:
\begin{eqnarray}
\nonumber P_3(u)\negthinspace &=&\negthinspace \sinh(\zeta_g u)\\
P_4(u)\negthinspace &=&\negthinspace \cosh(\zeta_g u)-{2\over \zeta}\, \sinh(\zeta_g/2)
\label{eq:nem2}
\end{eqnarray}
\noindent where
\begin{equation}
\zeta_g=\Delta x\sqrt{\Sigma_{{\rm r},g} \over D_g}
\end{equation}
\noindent where $\Delta x$, $\Sigma_{{\rm r},g}$ and $D_g$ are the node width (cm), the macroscopic removal cross section (cm$^{-1}$)
and the diffusion coefficient (cm) in group $g$, respectively.

\vskip 0.1cm
%
\vspace{2pt}
\begin{figure}[!h]
\centering
\includegraphics[scale=0.75]{./nodal_update.eps}
\parbox{11cm}{\caption{The nodal update procedure.}\label{fig:nodal_update}}   
\vspace{2pt}
\end{figure}
%

The analytic nodal method (ANM) is based on the {\sl Annals of Nuclear Energy} paper of Ref.~\citen{anm08}. The convergence of the ANM
relies on {\sl nodal correction iterations} consisting of repetitive solutions of the {\sl coarse mesh finite difference} (CMFD) method, as depicted in Fig.~\ref{fig:nodal_update}.
The CMFD method is similar to the {\sl mesh centered finite difference} (MCFD) method with the introduction of {\sl drift factors} $\tilde D_{i,g}^{\pm(n)}$ at each nodal correction
iteration. Solution of the CMFD equations relies on {\sl alternating direction implicit} (ADI) preconditionning with $LU$ factorization.

\goodbreak

The calling specifications are:

\begin{DataStructure}{Structure \dstr{NSSF:}}
\dusa{FLUX} \moc{:=} \moc{NSSF:} $[$ \dusa{FLUX} $]$ \dusa{TRACK} \dusa{MACRO} \moc{::} \dstr{NSSF\_data}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\dusa{FLUX}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_FLUX}) containing the solution. If \dusa{FLUX} appears on the RHS, the solution previously stored in \dusa{FLUX}
is used to initialize the new iterative process; otherwise, a uniform unknown vector is used.

\item[\dusa{TRACK}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_TRACK}) containing the {\sc tracking}.

\item[\dusa{MACRO}] {\tt character*12} name of the {\sc lcm} object (type {\tt L\_MACROLIB}) containing the cross sections, diffusion coefficients and discontinuity
factors.

\item[\dstr{NSSF\_data}] structure containing the data to module {\tt NSSF:} (see Sect.~\ref{sect:nssf_data}).

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Data input for module {\tt NSSF:}}\label{sect:nssf_data}

\begin{DataStructure}{Structure \dstr{NSSF\_data}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[~\{$ \moc{VAR1} $|$ \moc{ACCE} $\}$ \dusa{icl1} \dusa{icl2} $]$ \\
$[$ \moc{ADI} \dusa{nadi} $]$ \\
$[$ \moc{NUPD} $[$ \dusa{max\_no\_nodal\_iter} $[$ \dusa{no\_transverse\_iter} $]~]~[$ \dusa{nodal\_tol} $]~]$ \\
$[$ \moc{EXTE} $[$ \dusa{max\_no\_outer\_iter} $]~[$ \dusa{outer\_tol} $]~]$ \\
$[$ \moc{THER} $[$ \dusa{max\_no\_group\_iter} $]~[$ \dusa{group\_tol} $]~]$ \\
$[$ \moc{NODF} $]$ \\
$[$ \moc{LEAK} $\{$ \moc{flat} $|$ \moc{quadratic} $\}~]$ \\
$[$ \moc{BUCK} \dusa{valb2} $]$  \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmm}

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing  in module {\tt NSSF:}.
=0 for no print; =1 for minimum printing (default value).

\item[\moc{VAR1}] keyword used to set the parameters \dusa{icl1} and \dusa{icl2}. These parameter are used with the symmetrical variational
acceleration technique (SVAT) for convergence of the generalized CMFD eigenvalue problem (default option) and to accelerate up-scattering iterations.

\item[\moc{ACCE}] alias keyword for \moc{VAR1}.

\item[\dusa{icl1}] number of free outer iterations in a cycle of the variational acceleration technique.
The default value is \dusa{icl1} $=3$.

\item[\dusa{icl2}] number of accelerated outer iterations  in a cycle of the
variational acceleration technique. The default value is \dusa{icl2} $=3$. A convergence in free iterations is
obtained by setting \dusa{icl1} $=200$ (or \dusa{icl1} $=$ \dusa{max\_no\_outer\_iter}) and \dusa{icl2} $=0$.

\item[\moc{ADI}] keyword to set the number of ADI iterations at the inner CMFD iterative level.

\item[\dusa{nadi}] number of ADI iterations (default: \dusa{nadi} $=2$).

\item[\moc{NUPD}] keyword to specify the maximum number of nodal update iterations. 

\item[\dusa{max\_no\_nodal\_iter}] maximum number of nodal update iterations iterations. The fixed default
value is \dusa{max\_no\_outer\_iter} $=300$.

\item[\dusa{no\_transverse\_iter}] number of tranverse current iterations in each nodal update iteration. We recommend to use the minimum value required for convergence of nodal update iterations. The fixed default
value is \dusa{no\_transverse\_iter} $=3$.

\item[\dusa{nodal\_tol}] convergence criterion for the nodal update iterations. The
fixed default value is \dusa{nodal\_tol} $=1.0\times 10^{-6}$.

\item[\moc{EXTE}] keyword to specify that the control parameters for the $K_{\rm eff}$ CMFD iteration are to be modified. 

\item[\dusa{max\_no\_outer\_iter}] maximum number of $K_{\rm eff}$ iterations. The fixed default
value is \dusa{max\_no\_outer\_iter} $=100$.

\item[\dusa{outer\_tol}] convergence criterion for the $K_{\rm eff}$ iterations. The
fixed default value is \dusa{outer\_tol} $=1.0\times 10^{-5}$.

\item[\moc{THER}] keyword to specify that the control parameters for the
thermal upscattering iteration are to be modified. 

\item[\dusa{max\_no\_group\_iter}] maximum number of thermal upscattering iterations. The fixed default
value is \dusa{max\_no\_group\_iter} $=0$.

\item[\dusa{group\_tol}] convergence criterion for the thermal upscattering iterations. The
fixed default value is \dusa{group\_tol} $=1.0\times 10^{-6}$.

\item[\moc{NODF}] keyword used to force discontinuity factors to one.

\item[\moc{LEAK}] keyword to specify the type of transverse leakage approximation.

\item[\moc{flat}] flat leakage approximation.

\item[\moc{quadratic}] quadratic leakage approximation in the internal nodes and linear leakage approximation in the boundary nodes.

\item[\moc{BUCK}] keyword used to specify the fixed buckling. By default,
\dusa{valb2} $=0$ cm$^{-2}$

\item[\dusa{valb2}] value of the fixed total buckling in cm$^{-2}$.

\end{ListeDeDescription}

\clearpage