summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDtrivac.tex
blob: 41667db3ce009b96cb9d5e532f4e728fb144b9a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
\subsection{The \moc{trivat} dependent records on a
\dir{tracking} directory}\label{sect:trivatrackingdir}

A TRIVAC--type tracking data structure is holding the information related to
the ADI partitionning of the system matrices in 1D, 2D or 3D. A one-speed
discretization of the diffusion equation leads to a matrix system of the form

\begin{equation}
\bf{A} \ \vec\Phi = \vec S
\label{eq:tratr1}
\end{equation}

\noindent where $\Phi$ may contains different types of unknowns: flux values,
current values, polynomial coefficients, etc.

\vskip 0.2cm

The matrix $\bf{A}$ can be splitted in different ways. Many TRIVAC discretizations in
Cartesian geometry are based on the following ADI splitting:

\begin{equation}
\bf{A} = \bf{U} + \bf{P}_x\bf{X}\bf{P}_x^\top + \bf{P}_y\bf{Y}\bf{P}_y^\top + \bf{P}_z\bf{Z}\bf{P}_z^\top
\label{eq:tratr2}
\end{equation}

\noindent where

\begin{tabular}{rl}
$\bf{U}=$ & matrix containing the diagonal elements of $\bf{A}$\\
$\bf{X},\bf{Y},\bf{Z}=$ & symetrical matrices containing the nondiagonal elements of $\bf{A}$\\
$\bf{P}_x,\bf{P}_y,\bf{P}_z=$ & permutation matrices that ensure a minimum bandwidth for matrices $\bf{X}$, $\bf{Y}$ and $\bf{Z}$.\\
\end{tabular}

\vskip 0.2cm

Similarly, many discretizations in hexagonal geometry are based on the following ADI splitting:
\begin{equation}
\bf{A} = \bf{U} + \bf{P_w}\bf{W}\bf{P}_w^\top + \bf{P}_x\bf{X}\bf{P}_x^\top + \bf{P}_y\bf{Y}\bf{P}_y^\top + \bf{P}_z\bf{Z}\bf{P}_z^\top \ \ \ .
\label{eq:tratr3}
\end{equation}

The diffusion equation can also be solved using a Thomas-Raviart polynomial basis together with a mixte-dual
variational formulation. In this case, the following splitting will be used in Cartesian geometry:

\begin{equation}
\bf{A} = \left(\matrix{\bf{A}_x & \bf{0} & \bf{0} & -\bf{R}_x \cr
         \bf{0} & \bf{A}_y & \bf{0} & -\bf{R}_y \cr
         \bf{0} & \bf{0} & \bf{A}_z & -\bf{R}_z \cr
         -\bf{R}_x^\top & -\bf{R}_y^\top & -\bf{R}_z^\top & -\bf{T} \cr}\right)
\label{eq:tratr4}
\end{equation}

\vskip 0.2cm

Similarly, we use the following ADI splitting in hexagonal geometry:

\begin{equation}
\bf{A} = \left(\matrix{\bf{A}_w & \bf{C}_{xw}^\top & \bf{C}_{wy} &\bf{0} & -\bf{R}_w \cr
         \bf{C}_{xw} & \bf{A}_x & \bf{C}_{yx}^\top & \bf{0} & -\bf{R}_x \cr
         \bf{C}_{wy}^\top & \bf{C}_{yx} & \bf{A}_y & \bf{0} & -\bf{R}_y \cr
         \bf{0} & \bf{0} & \bf{0} & \bf{A}_z & -\bf{R}_z \cr
         -\bf{R}_w^\top & -\bf{R}_x^\top & -\bf{R}_y^\top & -\bf{R}_z^\top & -\bf{T} \cr}\right)
\label{eq:tratr5}
\end{equation}

\vskip 0.2cm

When the \moc{TRIVAT:} operator is used ($\mathsf{CDOOR}$={\tt 'TRIVAC'}), the following elements in the vector
$\mathcal{S}^{t}_{i}$ will also be defined.

\begin{itemize}
\item $\mathcal{S}^{t}_{6}$: ({\tt ITYPE}) Type of TRIVAC geometry:
\begin{displaymath}
\mathcal{S}^{t}_{6} = \left\{
\begin{array}{rl}
 2 & \textrm{Cartesian 1-D geometry} \\
 3 & \textrm{Tube 1-D geometry} \\
 5 & \textrm{Cartesian 2-D geometry} \\
 6 & \textrm{Tube 2-D geometry} \\
 7 & \textrm{Cartesian 3-D geometry} \\
 8 & \textrm{Hexagonal 2-D geometry} \\
 9 & \textrm{Hexagonal 3-D geometry}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{7}$: ({\tt IHEX}) Type of hexagonal symmetry if $\mathcal{S}^{t}_{6}\ge 8$:
\begin{displaymath}
\mathcal{S}^{t}_{7} = \left\{
\begin{array}{rl}
 0 & \textrm{non-hexagonal geometry} \\
 1 & \textrm{S30} \\
 2 & \textrm{SA60} \\
 3 & \textrm{SB60} \\
 4 & \textrm{S90} \\
 5 & \textrm{R120} \\
 6 & \textrm{R180} \\
 7 & \textrm{SA180} \\
 8 & \textrm{SB180} \\
 9 & \textrm{COMPLETE} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{8}$: ({\tt IDIAG}) Diagonal symmetry flag if $\mathcal{S}^{t}_{6}=5$ or $=7$.
$\mathcal{S}^{t}_{8}=1$ if diagonal symmetry is present.

\item $\mathcal{S}^{t}_{9}$: ({\tt IELEM}) Type of finite elements:
\begin{displaymath}
\mathcal{S}^{t}_{9} = \left\{
\begin{array}{rl}
 <0 & \textrm{Order $-\mathcal{S}^{t}_{9}$ primal finite elements} \\
 >0 & \textrm{Order $\mathcal{S}^{t}_{9}$ dual finite elements}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{10}$: ({\tt ICOL}) Type of quadrature used to integrate
the mass matrix:
\begin{displaymath}
\mathcal{S}^{t}_{10} = \left\{
\begin{array}{rl}
 1 & \textrm{Analytical integration} \\
 2 & \textrm{Gauss-Lobatto quadrature (finite difference/collocation method)} \\
 3 & \textrm{Gauss-Legendre quadrature (superconvergent approximation)}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{11}$: ({\tt LL4}) Order of the group-wise matrices.
Generally equal to
$\mathcal{S}^{t}_{2}$ except in cases where averaged fluxes are appended to the
unknown vector. $\mathcal{S}^{t}_{11}\le\mathcal{S}^{t}_{2}$.

\item $\mathcal{S}^{t}_{12}$: ({\tt ICHX}) Type of discretization algorithm:
\begin{displaymath}
\mathcal{S}^{t}_{12} = \left\{
\begin{array}{rl}
 1 & \textrm{Variational collocation method (mesh-corner finite differences or primal finite} \\
   & \textrm{elements with Gauss-Lobatto quadrature). \Eq{tratr2} or \Eq{tratr3} is used.} \\
 2 & \textrm{Dual finite element approximation (Thomas-Raviart or Thomas-Raviart-Schneider} \\
   & \textrm{polynomial basis). \Eq{tratr4} or \Eq{tratr5} is used.} \\
 3 & \textrm{Nodal collocation method with full tensorial products (mesh-centered finite} \\
   & \textrm{differences or dual finite elements with Gauss-Lobatto quadrature). \Eq{tratr2} or} \\
   & \textrm{\Eq{tratr3} is used.} \\
 4 & \textrm{Coarse mesh finite differences (CMFD) method.} \\
 5 & \textrm{Nodal expansion method (NEM).} \\
 6 & \textrm{Analytic nodal method (ANM).}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{13}$: ({\tt ISPLH}) Type of hexagonal mesh splitting if $\mathcal{S}^{t}_{6}\ge 8$:
\begin{displaymath}
\mathcal{S}^{t}_{13} = \left\{
\begin{array}{rl}
 1 & \textrm{No mesh splitting (full hexagons)}; \emph{or} \\
   & \textrm{$3$ lozenges per hexagon with Thomas-Raviart-Schneider approximation} \\
 K & \textrm{$6\times(K-1)\times(K-1)$ triangles per hexagon with finite-difference approximations} \\
   & \textrm{$3\times K \times K$ lozenges per hexagon with Thomas-Raviart-Schneider approximation}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{14}$: ({\tt LX}) Number of elements along the $X$ axis in Cartesian geometry or number of
hexagons in one axial plane.

\item $\mathcal{S}^{t}_{15}$: ({\tt LY}) Number of elements along the $Y$ axis.

\item $\mathcal{S}^{t}_{16}$: ({\tt LZ}) Number of elements along the $Z$ axis.

\item $\mathcal{S}^{t}_{17}$: ({\tt ISEG}) Number of components in a vector
register (used
for supervectorial operations). Equal to zero for operations in scalar mode.

\item $\mathcal{S}^{t}_{18}$: ({\tt IMPV}) Print parameter for supervectorial operations.

\item $\mathcal{S}^{t}_{19}$: ({\tt LTSW}) Maximum bandwidth for supervectorial operations ($=2$ for
tridiagonal matrices).

\item $\mathcal{S}^{t}_{20}$: ({\tt LONW}) number of groups of linear systems for matrices
$\bf{W}+\bf{P}_w^\top \bf{U}\bf{P}_w$ or $\bf{A}_w+\bf{R}_w\bf{T}^{-1}\bf{R}_w^\top$ (used
for supervectorial operations)

\item $\mathcal{S}^{t}_{21}$: ({\tt LONX})  number of groups of linear systems for matrices
$\bf{X}+\bf{P}_x^\top \bf{U}\bf{P}_x$ or $\bf{A}_x+\bf{R}_x\bf{T}^{-1}\bf{R}_x^\top$ (used
for supervectorial operations)

\item $\mathcal{S}^{t}_{22}$: ({\tt LONY})  number of groups of linear systems for matrices
$\bf{Y}+\bf{P}_y^\top \bf{U}\bf{P}_y$ or $\bf{A}_y+\bf{R}_y\bf{T}^{-1}\bf{R}_y^\top$ (used
for supervectorial operations)

\item $\mathcal{S}^{t}_{23}$: ({\tt LONZ})  number of groups of linear systems for matrices
$\bf{Z}+\bf{P}_z^\top \bf{U}\bf{P}_z$ or $\bf{A}_z+\bf{R}_z\bf{T}^{-1}\bf{R}_z^\top$ (used
for supervectorial operations)

\item $\mathcal{S}^{t}_{24}$: ({\tt NR0}) Number of radii used with the cylindrical correction
algorithm for the albedos. Equal to zero if no cylindrical correction is applied.

\item $\mathcal{S}^{t}_{25}$: ({\tt LL4F}) Order of matrices $\bf{T}$ if $\mathcal{S}^{t}_{12}=2$ or number of average flux components if $\mathcal{S}^{t}_{12}=4$

\item $\mathcal{S}^{t}_{26}$: ({\tt LL4W}) Order of matrices $\bf{A_w}$ if $\mathcal{S}^{t}_{12}=2$

\item $\mathcal{S}^{t}_{27}$: ({\tt LL4X}) Order of matrices $\bf{A_x}$ if $\mathcal{S}^{t}_{12}=2$ or number of $X-$directed net current components if $\mathcal{S}^{t}_{12}=4$

\item $\mathcal{S}^{t}_{28}$: ({\tt LL4Y}) Order of matrices $\bf{A_y}$ if $\mathcal{S}^{t}_{12}=2$ or number of $Y-$directed net current components if $\mathcal{S}^{t}_{12}=4$

\item $\mathcal{S}^{t}_{29}$: ({\tt LL4Z}) Order of matrices $\bf{A_z}$ if $\mathcal{S}^{t}_{12}=2$ or number of $Z-$directed net current components if $\mathcal{S}^{t}_{12}=4$

\item $\mathcal{S}^{t}_{30}$: ({\tt NLF}) Number of components in the angular expansion of the flux. Must be a positive
even number. Set to zero for diffusion theory. Set to 2 for $P_1$ method.

\item $\mathcal{S}^{t}_{31}$: ({\tt ISPN}) Type of transport approximation if {\tt NLF}$\ne 0$:
\begin{displaymath}
\mathcal{S}^{t}_{31} = \left\{
\begin{array}{rl}
 0 & \textrm{Complete $P_n$ approximation of order {\tt NLF}$-1$ (currently not available)}\\
 1 & \textrm{Simplified $P_n$ approximation of order {\tt NLF}$-1$}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{32}$: ({\tt ISCAT}) Number of terms in the scattering sources if {\tt NLF}$\ne 0$:
\begin{displaymath}
\mathcal{S}^{t}_{32} = \left\{
\begin{array}{rl}
 1 & \textrm{Isotropic scattering in the laboratory system} \\
 2 & \textrm{Linearly anisotropic scattering in the laboratory system} \\
 $n$ & \textrm{order $n-1$ anisotropic scattering in the laboratory system}
\end{array} \right.
\end{displaymath}
\noindent A negative value of $\mathcal{S}^{t}_{32}$ indicates that $1/3D^{g}$ values are used as $\Sigma_1^{g}$ cross sections.

\item $\mathcal{S}^{t}_{33}$: ({\tt NADI}) Number of ADI iterations at the inner
iterative level.

\item $\mathcal{S}^{t}_{34}$: ({\tt NVD}) Number of base points in the Gauss-Legendre quadrature used to integrate
void boundary conditions if {\tt ICOL} $=3$ and {\tt NLF}$\ne 0$:
\begin{displaymath}
\mathcal{S}^{t}_{34} = \left\{
\begin{array}{rl}
 0 & \textrm{Use a ({\tt NLF}$+1$)--point quadrature consistent with $P_{{\rm NLF}-1}$ theory} \\
 1 & \textrm{Use a {\tt NLF}--point quadrature consistent with $S_{\rm NLF}$ theory} \\
 2 & \textrm{Use an analytical integration consistent with diffusion theory.}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{39}$: ({\tt IGMAX}) Hyperbolic nodal expansion functions are used in energy groups indices $\ge$ {\tt IGMAX}.
\end{itemize}

The following records will also be present on the main level of a \dir{tracking} directory.

\clearpage

\begin{DescriptionEnregistrement}{The \moc{trivat} records in
\dir{tracking}}{8.0cm}
\IntEnr
  {NCODE\blank{7}}{$6$}
  {Record containing the types of boundary conditions on each surface. =0 side
   not used; =1 VOID; =2 REFL; =4 TRAN; =5 SYME; =7 ZERO; =8 CYLI.} 
\RealEnr
  {ZCODE\blank{7}}{$6$}{$1$}
  {Record containing the albedo value (real number) on each surface.} 
\OptRealEnr
  {SIDE\blank{8}}{$1$}{$\mathcal{S}^{t}_{6}\ge 8$}{cm}
  {Side of a hexagon.} 
\OptRealEnr
  {XX\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}<8$}{cm}
  {Element-ordered $X$-directed mesh spacings after mesh-splitting for type 2, 5
   or 7 geometries. Element-ordered radius after mesh-splitting for type 3
   or 6 geometries.} 
\OptRealEnr
  {YY\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=5, \ 6 \ {\rm or} \ 7$}{cm}
  {Element-ordered $Y$-directed mesh spacings after mesh-splitting for type 5, 6
   or 7 geometries.} 
\OptRealEnr
  {ZZ\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=7 \ {\rm or} \ 9$}{cm}
  {Element-ordered $Y$-directed mesh spacings after mesh-splitting for type 7
   or 9 geometries.} 
\OptRealEnr
  {DD\blank{10}}{$\mathcal{S}^{t}_{1}$}{$\mathcal{S}^{t}_{6}=3 \ {\rm or} \ 6$}{cm}
  {Element-ordered position used with type 3 and 6 cylindrical geometries.} 
\IntEnr
  {KN\blank{10}}{$N_{\rm kn}\times\mathcal{S}^{t}_{1}$}
  {Element-ordered unknown list. $N_{\rm kn}$ is the number of unknowns per element.} 
\RealEnr
  {QFR\blank{9}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}{}
  {Element-ordered boundary condition. $N_{\rm surf}=6$ in Cartesian geometry and $=8$ in hexagonal geometry.} 
\IntEnr
  {IQFR\blank{8}}{$N_{\rm surf}\times\mathcal{S}^{t}_{1}$}
  {Element-ordered physical albedo indices. $N_{\rm surf}=6$ in Cartesian geometry and $=8$ in hexagonal geometry.} 
\OptIntEnr
  {MUW\blank{9}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{26}$}{$\mathcal{S}^{t}_{6}\ge 8$}
  {Indices used with compressed diagonal storage mode matrices $\bf{W}+\bf{P}_w^\top \bf{U}\bf{P}_w$ or $\bf{A}_w+\bf{R}_w\bf{T}^{-1}\bf{R}_w^\top$.} 
\OptIntEnr
  {IPW\blank{9}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{t}_{6}\ge 8$}
  {Permutation vector ensuring minimum bandwidth for matrices $\bf{W}+\bf{P}_w^\top \bf{U}\bf{P}_w$ or $\bf{A}_w+\bf{R}_w\bf{T}^{-1}\bf{R}_w^\top$.} 
\OptIntEnr
  {MUX\blank{9}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{27}$}{$\mathcal{S}^{t}_{8}=0$}
  {Indices used with compressed diagonal storage mode matrices $\bf{X}+\bf{P}_x^\top \bf{U}\bf{P}_x$ or $\bf{A}_x+\bf{R}_x\bf{T}^{-1}\bf{R}_x^\top$.} 
\IntEnr
  {IPX\blank{9}}{$\mathcal{S}^{t}_{11}$}
  {Permutation vector ensuring minimum bandwidth for matrices $\bf{X}+\bf{P}_x^\top \bf{U}\bf{P}_x$ or $\bf{A}_x+\bf{R}_x\bf{T}^{-1}\bf{R}_x^\top$.} 
\OptIntEnr
  {MUY\blank{9}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{28}$}{$\mathcal{S}^{t}_{6}\ge 5$}
  {Indices used with compressed diagonal storage mode matrices $\bf{Y}+\bf{P}_y^\top \bf{U}\bf{P}_y$ or $\bf{A}_y+\bf{R}_y\bf{T}^{-1}\bf{R}_y^\top$.} 
\OptIntEnr
  {IPY\blank{9}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{t}_{6}\ge 5$}
  {Permutation vector ensuring minimum bandwidth for matrices $\bf{Y}+\bf{P}_y^\top \bf{U}\bf{P}_y$ or $\bf{A}_y+\bf{R}_y\bf{T}^{-1}\bf{R}_y^\top$.} 
\OptIntEnr
  {MUZ\blank{9}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{29}$}{$\mathcal{S}^{t}_{6}=7$ or $9$}
  {Indices used with compressed diagonal storage mode matrices $\bf{Z}+\bf{P}_z^\top \bf{U}\bf{P}_z$ or $\bf{A}_z+\bf{R}_z\bf{T}^{-1}\bf{R}_z^\top$.} 
\end{DescriptionEnregistrement}

\begin{DescriptionEnregistrement}{The \moc{trivat} records in \dir{tracking} (contd.)}{8.0cm}
\OptIntEnr
  {IPZ\blank{9}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{t}_{6}=7$ or $9$}
  {Permutation vector ensuring minimum bandwidth for matrices $\bf{Z}+\bf{P}_z^\top \bf{U}\bf{P}_z$ or $\bf{A}_z+\bf{R}_z\bf{T}^{-1}\bf{R}_z^\top$.} 
\DirEnr
  {BIVCOL\blank{6}}
  {Sub-directory containing the unit matrices (mass, stiffness, nodal coupling,
   etc.) for a finite element discretization.
  The specification of this directory is given in \Sect{bivactrackingdir}}
\end{DescriptionEnregistrement}

The following records will also be present on the main level of a \dir{tracking}
directory in cases where a nodal method is used ($\mathcal{S}^{t}_{12}\ge 4$):

\begin{DescriptionEnregistrement}{The \moc{trivat} records in \dir{tracking} (contd.)}{8.0cm}
\OptRealEnr
  {XXX\blank{9}}{$\mathcal{S}^{t}_{14}+1$}{$\mathcal{S}^{t}_{12}=6$}{cm}
  {The $x-$directed mesh position $X_{i}$}
\OptRealEnr
  {YYY\blank{9}}{$\mathcal{S}^{t}_{15}+1$}{$\mathcal{S}^{t}_{12}=6$ and $\mathcal{S}^{t}_{6}\ge 5$}{cm}
  {The $y-$directed mesh position $Y_{i}$}
\OptRealEnr
  {ZZZ\blank{9}}{$\mathcal{S}^{t}_{16}+1$}{$\mathcal{S}^{t}_{12}=6$ and $\mathcal{S}^{t}_{6}=7$}{cm}
  {The $z-$directed mesh position $Z_{i}$}
\OptIntEnr
  {IMAX\blank{8}}{$\mathcal{S}^{t}_{25}$}{$\mathcal{S}^{t}_{12}=6$}
  {$X-$oriented position of each first non-zero column element.} 
\OptIntEnr
  {IMAY\blank{8}}{$\mathcal{S}^{t}_{25}$}{$\mathcal{S}^{t}_{12}=6$ and $\mathcal{S}^{t}_{6}\ge 5$}
  {$Y-$oriented position of each first non-zero column element.} 
\OptIntEnr
  {IMAZ\blank{8}}{$\mathcal{S}^{t}_{25}$}{$\mathcal{S}^{t}_{12}=6$ and $\mathcal{S}^{t}_{6}=7$}
  {$Z-$oriented position of each first non-zero column element.} 
\end{DescriptionEnregistrement}

The following records will also be present on the main level of a \dir{tracking}
directory in cases where a Thomas-Raviart or Thomas-Raviart-Schneider polynomial basis is used ($\mathcal{S}^{t}_{12}=2$):

\begin{DescriptionEnregistrement}{The \moc{trivat} records in
\dir{tracking} (contd.)}{8.0cm}
\OptIntEnr
  {IPF\blank{9}}{$\mathcal{S}^{t}_{25}$}{$\mathcal{S}^{t}_{25}\ne 0$}
  {Localization vector for flux values in unknown vector.} 
\OptIntEnr
  {IPBBW\blank{7}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{26}$}{$\mathcal{S}^{t}_{26}\ne 0$}
  {Perdue sparse storage indices for matrices $\bf{R}_w$.} 
\OptIntEnr
  {IPBBX\blank{7}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{27}$}{$\mathcal{S}^{t}_{27}\ne 0$}
  {Perdue sparse storage indices for matrices $\bf{R}_x$.}
\OptIntEnr
  {IPBBY\blank{7}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{28}$}{$\mathcal{S}^{t}_{28}\ne 0$}
  {Perdue sparse storage indices for matrices $\bf{R}_y$.}
\OptIntEnr
  {IPBBZ\blank{7}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{29}$}{$\mathcal{S}^{t}_{29}\ne 0$}
  {Perdue sparse storage indices for matrices $\bf{R}_z$.} 
\OptRealEnr
  {WB\blank{10}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{26}$}{$\mathcal{S}^{t}_{26}\ne 0$}{~}
  {Matrix component $\bf{R}_w$ in Perdue sparse storage mode.} 
\OptRealEnr
  {XB\blank{10}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{27}$}{$\mathcal{S}^{t}_{27}\ne 0$}{~}
  {Matrix component $\bf{R}_x$ in Perdue sparse storage mode.} 
\OptRealEnr
  {YB\blank{10}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{28}$}{$\mathcal{S}^{t}_{28}\ne 0$}{~}
  {Matrix component $\bf{R}_y$ in Perdue sparse storage mode.} 
\OptRealEnr
  {ZB\blank{10}}{$2 \, \mathcal{S}^{t}_{9} \times \mathcal{S}^{t}_{29}$}{$\mathcal{S}^{t}_{29}\ne 0$}{~}
  {Matrix component $\bf{R}_z$ in Perdue sparse storage mode.} 
\OptIntEnr
  {IPERT\blank{7}}{$N_{\rm los}$}{$\mathcal{S}^{t}_{6}\ge 8$}
  {Mixture permutation index. $N_{\rm los}=\mathcal{S}^{t}_{14}\times \mathcal{S}^{t}_{15}\times (\mathcal{S}^{t}_{13})^2$} 
\OptDbleEnr
  {CTRAN\blank{7}}{$N_{\rm pio}\times N_{\rm pio}$}{$\mathcal{S}^{t}_{6}\ge 8$}{~}
  {Piolat current coupling matrix. $N_{\rm pio}=(\mathcal{S}^{t}_{9}+1)\times \mathcal{S}^{t}_{9}$} 
\OptRealEnr
  {FRZ\blank{9}}{$\mathcal{S}^{t}_{16}$}{$\mathcal{S}^{t}_{6}\ge 8$}{~}
  {Volume fractions related to the SYME boundary condition in $Z$.} 
\end{DescriptionEnregistrement}

The following records will also be present on the main level of a \dir{tracking}
directory in cases where supervectorial operations are used ($\mathcal{S}^{t}_{17}\ne 0$):

\begin{DescriptionEnregistrement}{The \moc{trivat} records in
\dir{tracking} (contd.)}{8.0cm}
\IntEnr
  {LL4VW\blank{7}}{$1$}
  {Order of a reordered $W-$matrix, including supervectorial fill-in. Multiple of $\mathcal{S}^{t}_{17}$}
\IntEnr
  {LL4VX\blank{7}}{$1$}
  {Order of a reordered $X-$matrix, including supervectorial fill-in. Multiple of $\mathcal{S}^{t}_{17}$}
\IntEnr
  {LL4VY\blank{7}}{$1$}
  {Order of a reordered $Y-$matrix, including supervectorial fill-in. Multiple of $\mathcal{S}^{t}_{17}$}
\IntEnr
  {LL4VZ\blank{7}}{$1$}
  {Order of a reordered $Z-$matrix, including supervectorial fill-in. Multiple of $\mathcal{S}^{t}_{17}$}
\OptIntEnr
  {NBLW\blank{8}}{$\mathcal{S}^{t}_{20}$}{$\mathcal{S}^{t}_{20}\ne 0$}
  {Number of linear systems per supervector group for $W-$matrices}
\OptIntEnr
  {NBLX\blank{8}}{$\mathcal{S}^{t}_{21}$}{$\mathcal{S}^{t}_{21}\ne 0$}
  {Number of linear systems per supervector group for $X-$matrices}
\OptIntEnr
  {NBLY\blank{8}}{$\mathcal{S}^{t}_{22}$}{$\mathcal{S}^{t}_{22}\ne 0$}
  {Number of linear systems per supervector group for $Y-$matrices}
\OptIntEnr
  {NBLZ\blank{8}}{$\mathcal{S}^{t}_{23}$}{$\mathcal{S}^{t}_{23}\ne 0$}
  {Number of linear systems per supervector group for $Z-$matrices}
\OptIntEnr
  {LBLW\blank{8}}{$\mathcal{S}^{t}_{20}$}{$\mathcal{S}^{t}_{20}\ne 0$}
  {Number of unknowns per supervector group for $W-$matrices}
\OptIntEnr
  {LBLX\blank{8}}{$\mathcal{S}^{t}_{21}$}{$\mathcal{S}^{t}_{21}\ne 0$}
  {Number of unknowns per supervector group for $X-$matrices}
\OptIntEnr
  {LBLY\blank{8}}{$\mathcal{S}^{t}_{22}$}{$\mathcal{S}^{t}_{22}\ne 0$}
  {Number of unknowns per supervector group for $Y-$matrices}
\OptIntEnr
  {LBLZ\blank{8}}{$\mathcal{S}^{t}_{23}$}{$\mathcal{S}^{t}_{23}\ne 0$}
  {Number of unknowns per supervector group for $Z-$matrices}
\OptIntEnr
  {MUVW\blank{8}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{26}$}{$\mathcal{S}^{t}_{6}\ge 8$}
  {Indices used with $W-$directed compressed diagonal storage mode matrices in supervector mode}
\OptIntEnr
  {MUVX\blank{8}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{27}$}{$\mathcal{S}^{t}_{8}=0$}
  {Indices used with $X-$directed compressed diagonal storage mode matrices in supervector mode}
\OptIntEnr
  {MUVY\blank{8}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{28}$}{$\mathcal{S}^{t}_{6}\ge 5$}
  {Indices used with $Y-$directed compressed diagonal storage mode matrices in supervector mode}
\OptIntEnr
  {MUVZ\blank{8}}{$\mathcal{S}^{t}_{11}$ or $\mathcal{S}^{t}_{29}$}{$\mathcal{S}^{t}_{6}=7$ or $9$}
  {Indices used with $Z-$directed compressed diagonal storage mode matrices in supervector mode}
\OptIntEnr
  {IPVW\blank{8}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{t}_{6}\ge 8$}
  {$W-$directed ADI permutation matrix in supervector mode}
\IntEnr
  {IPVX\blank{8}}{$\mathcal{S}^{t}_{11}$}
  {$X-$directed ADI permutation matrix in supervector mode}
\OptIntEnr
  {IPVY\blank{8}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{t}_{6}\ge 5$}
  {$Y-$directed ADI permutation matrix in supervector mode}
\OptIntEnr
  {IPVZ\blank{8}}{$\mathcal{S}^{t}_{11}$}{$\mathcal{S}^{t}_{6}=7$ or $9$}
  {$Z-$directed ADI permutation matrix in supervector mode}
\end{DescriptionEnregistrement}

The following records will also be present on the main level of a \dir{tracking}
directory in cases where a cylindrical correction of the albedos is used ($\mathcal{S}^{t}_{24}\ne 0$):

\begin{DescriptionEnregistrement}{The \moc{trivat} records in
\dir{tracking} (contd.)}{8.0cm}
\OptRealEnr
  {RR0\blank{9}}{$\mathcal{S}^{t}_{24}$}{$\mathcal{S}^{t}_{24}\ne 0$}{cm}
  {Radii of the cylindrical boundaries in the cylindrical correction}
\OptRealEnr
  {XR0\blank{9}}{$\mathcal{S}^{t}_{24}$}{$\mathcal{S}^{t}_{24}\ne 0$}{cm}
  {Coordinates on principal axis in the cylindrical correction}
\OptRealEnr
  {ANG\blank{9}}{$\mathcal{S}^{t}_{24}$}{$\mathcal{S}^{t}_{24}\ne 0$}{1}
  {Angles for applying the cylindrical correction}
\end{DescriptionEnregistrement}

\eject