1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
\subsection{The \moc{sybilt} dependent records and sub-directories on a
\dir{tracking} directory}\label{sect:sybiltrackingdir}
When the \moc{SYBILT:} operator is used ($\mathsf{CDOOR}$={\tt 'SYBIL'}), the following elements in the vector
$\mathcal{S}^{t}_{i}$ will also be defined.
\begin{itemize}
\item The main SYBIL model $\mathcal{S}^{t}_{6}$
\begin{displaymath}
\mathcal{S}^{t}_{6} = \left\{
\begin{array}{rl}
2 & \textrm{Pure geometry} \\
3 & \textrm{Do-it-yourself geometry} \\
4 & \textrm{2-D assembly geometry} \\
\end{array} \right.
\end{displaymath}
\item Minimum space required to store tracks for assembly geometry $\mathcal{S}^{t}_{7}$
\item Minimum space required to store interface currents for assembly geometry $\mathcal{S}^{t}_{8}$
\item Number of additional unknowns holding the interface currents
$\mathcal{S}^{t}_{9}$. These unknowns are used if and only if a current--based
inner iterative method is set (with option \moc{ARM}).
\end{itemize}
The following sub-directories will also be present on the main level of a \dir{tracking}
directory.
\begin{DescriptionEnregistrement}{The \moc{sybilt} records and sub-directories in
\dir{tracking}}{8.0cm}\label{table:puregeom}
\RealEnr
{EPSJ\blank{8}}{$1$}{$1$}
{Stopping criterion for flux-current iterations of the interface current method}
\OptDirEnr
{PURE-GEOM\blank{3}}{$\mathcal{S}^{t}_{6}=2$}
{Sub-directory containing the data related to a pure geometry}
\OptDirEnr
{DOITYOURSELF}{$\mathcal{S}^{t}_{6}=3$}
{Sub-directory containing the data related to a do-it-yourself geometry}
\OptDirEnr
{EURYDICE\blank{4}}{$\mathcal{S}^{t}_{6}=4$}
{Sub-directory containing the data related to an assembly geometry}
\end{DescriptionEnregistrement}
\vskip -0.4cm
\noindent
where the sub-directories in Table~\ref{table:puregeom} are described in the following subsections.
\subsubsection{The \moc{/PURE-GEOM/} sub-directory in \moc{sybilt}}\label{sect:puregeomtrackingdir}
\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt}
\moc{/PURE-GEOM/} sub-directory}{8.0cm}
\IntEnr
{PARAM\blank{7}}{$6$}
{Record containing the parameters for a SYBIL tracking on a pure geometry $\mathcal{P}_{i}$}
\IntEnr
{NCODE\blank{7}}{$6$}
{Record containing the types of boundary conditions on each surface $N_{\beta,j}$}
\RealEnr
{ZCODE\blank{7}}{$6$}{$1$}
{Record containing the albedo value on each surface}
\OptRealEnr
{XXX\blank{9}}{$\mathcal{P}_{4}+1$}{$\mathcal{P}_{4}\ge 1$}{cm}
{$x-$directed mesh coordinates after mesh-splitting for type
2, 5 and 7 geometries. Region-ordered radius after mesh-splitting for type 3 and 6
geometries}
\OptRealEnr
{YYY\blank{9}}{$\mathcal{P}_{5}+1$}{$\mathcal{P}_{5}\ge 1$}{cm}
{$y-$directed mesh coordinates after mesh-splitting for type 5, 6 and 7 geometries}
\OptRealEnr
{ZZZ\blank{9}}{$\mathcal{P}_{6}+1$}{$\mathcal{P}_{6}\ge 1$}{cm}
{$z-$directed mesh coordinates after mesh-splitting for type 7 and 9 geometries}
\OptRealEnr
{SIDE\blank{8}}{$1$}{$\mathcal{P}_{1}\ge 8$}{cm}
{Side of a hexagon for type 8 and 9 geometries}
\end{DescriptionEnregistrement}
\vskip -0.2cm
\noindent
with the dimension parameter $\mathcal{P}_{i}$, representing:
\begin{itemize}
\item The type of geometry $\mathcal{P}_{1}$
\begin{displaymath}
\mathcal{P}_{1} = \left\{
\begin{array}{rl}
2 & \textrm{Cartesian 1-D geometry} \\
3 & \textrm{Tube 1-D geometry} \\
4 & \textrm{Spherical 1-D geometry} \\
5 & \textrm{Cartesian 2-D geometry} \\
6 & \textrm{Tube 2-D geometry} \\
7 & \textrm{Cartesian 3-D geometry} \\
8 & \textrm{Hexagonal 2-D geometry} \\
9 & \textrm{Hexagonal 3-D geometry} \\
\end{array} \right.
\end{displaymath}
\item The type of hexagonal symmetry $\beta_{h}=\mathcal{P}_{2}$
\begin{displaymath}
\beta_{h} = \left\{
\begin{array}{rl}
1 & \textrm{S30} \\
2 & \textrm{SA60} \\
3 & \textrm{SB60} \\
4 & \textrm{S90} \\
5 & \textrm{R120} \\
6 & \textrm{R180} \\
7 & \textrm{SA180} \\
8 & \textrm{SB180} \\
9 & \textrm{COMPLETE} \\
\end{array} \right.
\end{displaymath}
\item The quadrature parameter $\mathcal{P}_{3}$
\item The number of $x-$directed or radial mesh intervals in the geometry $\mathcal{P}_{4}$
\item The number of $y-$directed mesh intervals in the geometry $\mathcal{P}_{5}$
\item The number of $z-$directed mesh intervals in the geometry $\mathcal{P}_{6}$
\end{itemize}
The type of boundary conditions used will be defined in the following way
\begin{displaymath}
N_{\beta,j} = \left\{
\begin{array}{rl}
0 & \textrm{Not used} \\
1 & \textrm{Void boundary condition} \\
2 & \textrm{Reflection boundary condition} \\
3 & \textrm{Diagonal reflection boundary condition} \\
4 & \textrm{Translation boundary condition condition} \\
5 & \textrm{Symmetric reflection boundary condition} \\
6 & \textrm{Albedo boundary condition} \\
\end{array} \right.
\end{displaymath}
\subsubsection{The \moc{/DOITYOURSELF/} sub-directory in \moc{sybilt}}\label{sect:doittrackingdir}
\vskip -0.9cm
\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt}
\moc{/DOITYOURSELF/} sub-directory}{8.0cm}
\IntEnr
{PARAM\blank{7}}{$3$}
{Record containing the parameters for a SYBIL tracking on a do-it-yourself geometry
$\mathcal{P}_{i}$}
\IntEnr
{NMC\blank{9}}{$M+1$}
{Offset of the first region in each cell}
\RealEnr
{RAYRE\blank{7}}{$N_r+M$}{cm}
{Radius of the tubes in each cell}
\RealEnr
{PROCEL\blank{6}}{$M,M$}{}
{Geometric matrix}
\RealEnr
{POURCE\blank{6}}{$M$}{}
{Weight assigned to each cell}
\RealEnr
{SURFA\blank{7}}{$M$}{cm$^{2}$}
{Surface of each cell }
\end{DescriptionEnregistrement}
\noindent
with the dimension parameter $\mathcal{P}_{i}$, representing:
\begin{itemize}
\item The number of cells $\mathcal{P}_{1}=M$
\item The quadrature parameter $\mathcal{P}_{2}$
\item The statistical option $\mathcal{P}_{3}$
\begin{displaymath}
\mathcal{P}_{3} = \left\{
\begin{array}{rl}
0 & \textrm{the statistical approximation is not used. Record {\tt 'PROCEL'} is used.} \\
1 & \textrm{use the statistical approximation. Record {\tt 'PROCEL'} is not used.}
\end{array} \right.
\end{displaymath}
\end{itemize}
\clearpage
\subsubsection{The \moc{/EURYDICE/} sub-directory in \moc{sybilt}}\label{sect:eurydicetrackingdir}
\vskip -0.9cm
\begin{DescriptionEnregistrement}{The contents of the \moc{sybilt}
\moc{/EURYDICE/} sub-directory}{8.0cm}
\IntEnr
{PARAM\blank{7}}{$16$}
{Record containing the parameters for a SYBIL tracking on an assembly geometry
$\mathcal{P}_{i}$}
\RealEnr
{XX\blank{10}}{$\mathcal{P}_{6}$}{cm}
{$x-$thickness of the generating cells}
\RealEnr
{YY\blank{10}}{$\mathcal{P}_{6}$}{cm}
{$y-$thickness of the generating cells}
\IntEnr
{LSECT\blank{7}}{$\mathcal{P}_{6}$}
{Type of sectorization for each each generating cell. Equal to zero for
non-sectorized cells. Allowed values are defined as $F_{\mathrm{sec}}$ in \Sect{geometrydirmain}}
\IntEnr
{NMC\blank{9}}{$\mathcal{P}_{6}+1$}
{Offset of the first region index in each generating cell}
\IntEnr
{NMCR\blank{8}}{$\mathcal{P}_{6}+1$}
{Offset of the first radius index in each generating cell. Equal to
{\tt NMC}, unless the cell is sectorized.}
\RealEnr
{RAYRE\blank{7}}{$M_r$}{cm}
{Radius of the tubes in each generating cell. $M_r=${\tt NMCR(}$\mathcal{P}_{6}+1${\tt )}}
\IntEnr
{MAIL\blank{8}}{$2,\mathcal{P}_{6}$}
{Offsets of the first tracking information in each generating cell. {\tt
MAIL(1,:)} contains offsets for the integer array {\tt ZMAILI}; {\tt
MAIL(2,:)} contains offsets for the real array {\tt ZMAILR}.}
\IntEnr
{ZMAILI\blank{6}}{$\mathcal{P}_{15}$}
{The integer tracking information}
\RealEnr
{ZMAILR\blank{6}}{$\mathcal{P}_{16}$}{cm}
{The tracking lengths}
\IntEnr
{IFR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}
{Index numbers of incoming currents}
\RealEnr
{ALB\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{}
{Albedo or transmission factors corresponding to incoming currents}
\IntEnr
{INUM\blank{8}}{$\mathcal{P}_{4}$}
{Index number of the merge cell associated to each cell of the assembly}
\IntEnr
{MIX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$}
{Index numbers of outgoing currents}
\RealEnr
{DVX\blank{9}}{$\mathcal{P}_{5},\mathcal{P}_{14}$}{}
{Weights corresponding to outgoing currents}
\RealEnr
{SUR\blank{9}}{$\mathcal{P}_{4},\mathcal{P}_{14}$}{cm}
{Interface surfaces corresponding to incoming currents}
\IntEnr
{IGEN\blank{8}}{$\mathcal{P}_{5}$}
{Index number of the generating cell associated to each merged cell}
\end{DescriptionEnregistrement}
\noindent
with the dimension parameter $\mathcal{P}_{i}$, representing:
\begin{itemize}
\item The type of hexagonal symmetry $\mathcal{P}_{1}$
\begin{displaymath}
\mathcal{P}_{1} = \left\{
\begin{array}{rl}
0 & \textrm{Cartesian assembly} \\
1 & \textrm{S30} \\
2 & \textrm{SA60} \\
3 & \textrm{SB60} \\
4 & \textrm{S90} \\
5 & \textrm{R120} \\
6 & \textrm{R180} \\
7 & \textrm{SA180} \\
8 & \textrm{SB180} \\
9 & \textrm{COMPLETE} \\
\end{array} \right.
\end{displaymath}
\item The type of multicell approximation $\mathcal{P}_{2}$
\begin{displaymath}
\mathcal{P}_{2} = \left\{
\begin{array}{ll}
1 & \textrm{Roth approximation}\\
2 & \textrm{Roth$\times 4$ or Roth$\times 6$ approximation}\\
3 & \textrm{DP-0 approximation}\\
4 & \textrm{DP-1 approximation} \end{array} \right.
\end{displaymath}
\item The type of cylinderization $\mathcal{P}_{3}$
\begin{displaymath}
\mathcal{P}_{3} = \left\{
\begin{array}{ll}
1 & \textrm{Askew cylinderization}\\
2 & \textrm{Wigner cylinderization}\\
3 & \textrm{Sanchez cylinderization} \end{array} \right.
\end{displaymath}
\item The total number of cells $\mathcal{P}_{4}$
\item The number of merged cells $\mathcal{P}_{5}$
\item The number of generating cells $\mathcal{P}_{6}$
\item The number of distinct interface currents $\mathcal{P}_{7}$
\item The number of angles for 2-D quadrature $\mathcal{P}_{8}$
\item The number of segments for 2-D quadrature $\mathcal{P}_{9}$
\item The number of segments for homogeneous 2-D cells $\mathcal{P}_{10}$
\item The number of segments for 1-D cells $\mathcal{P}_{11}$
\item The track normalization option $\mathcal{P}_{12}$
\begin{displaymath}
\mathcal{P}_{12} = \left\{
\begin{array}{rl}
0 & \textrm{Normalize the tracks} \\
1 & \textrm{Do not normalize the tracks} \\
\end{array} \right.
\end{displaymath}
\item The type of quadrature in angle and space $\mathcal{P}_{13}$
\begin{displaymath}
\mathcal{P}_{13} = \left\{
\begin{array}{rl}
0 & \textrm{Gauss quadrature} \\
1 & \textrm{Equal weight quadrature} \\
\end{array} \right.
\end{displaymath}
\item The number of outgoing interface currents per cell $\mathcal{P}_{14}$
\item The number of integer array elements in the tracking arrays $\mathcal{P}_{15}$
\item The number of real array elements in the tracking arrays $\mathcal{P}_{16}$
\end{itemize}
\eject
|