summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDsn.tex
blob: 949f2c693f1ac4899fd00b488e224d248b76f48c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
\subsection{The \moc{snt} dependent records on a \dir{tracking} directory}\label{sect:sntrackingdir}

When the \moc{SNT:} operator is used ($\mathsf{CDOOR}$={\tt 'SN'}), the following elements in the vector
$\mathcal{S}^{t}_{i}$ will also be defined.

\begin{itemize}
\item $\mathcal{S}^{t}_{6}$: ({\tt ITYPE}) Type of SN geometry:
\begin{displaymath}
\mathcal{S}^{t}_{6} = \left\{
\begin{array}{rl}
 2 & \textrm{Cartesian 1-D geometry} \\
 3 & \textrm{Tube 1-D geometry} \\
 4 & \textrm{Spherical 1-D geometry} \\
 5 & \textrm{Cartesian 2-D geometry} \\
 6 & \textrm{Tube 2-D geometry (R-Z geometry)} \\
 7 & \textrm{Cartesian 3-D geometry} \\
 8 & \textrm{Hexagonal 2-D geometry} \\
 9 & \textrm{Hexagonal 3-D geometry}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{7}$: ({\tt NSCT}) Number of spherical harmonics components used to expand the flux and the sources.

%Update to tabular format?
\item $\mathcal{S}^{t}_{8}$: ({\tt IELEM}) Measure of order of the spatial approximation. The Legendre polynomials (for both HODD \emph{and} DG (see $\mathcal{S}^{t}_{10}$)) used are of order 0 (constant), 1 (linear), 2 (parabolic) or $>$3 (higher-orders), corresponding to {\tt IELEM} values of:
\begin{displaymath}
\mathcal{S}^{t}_{8} = \left\{
\begin{array}{rl}
 1 & \textrm{Constant- default for HODD} \\
 2 & \textrm{Linear - default for DG} \\
 3 & \textrm{Parabolic} \\
 >4 & \textrm{Higer-orders}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{9}$: ({\tt NDIM}) Number of geometric dimensions (1, 2 or 3).

\item $\mathcal{S}^{t}_{10}$: ({\tt ISCHM}) Method of spatial discretisation:
\begin{displaymath}
\mathcal{S}^{t}_{10} = \left\{
\begin{array}{rl}
 1 & \textrm{High-Order Diamond Differencing method (HODD) -- default option if unspecified} \\
 2 & \textrm{Discontinuous Galerkin finite element method (DG) -- available if $\mathcal{S}^{t}_{6} = 2, 5, 7, 8,$ or $9$}\\
 3 & \textrm{Adaptive Weighted difference (AWD) -- available if $\mathcal{S}^{t}_{6} = 2, 5, 7, 8,$ or $9$}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{11}$: ({\tt LL4}) Number of mesh-centered flux components in one energy group.
Generally equal to
$\mathcal{S}^{t}_{2}$ except in cases where surfacic fluxes are appended to the
unknown vector. $\mathcal{S}^{t}_{11}\le\mathcal{S}^{t}_{2}$.

\item $\mathcal{S}^{t}_{12}$: ({\tt LX}) Number of elements along the $X$ axis.

\item $\mathcal{S}^{t}_{13}$: ({\tt LY}) Number of elements along the $Y$ axis.

\item $\mathcal{S}^{t}_{14}$: ({\tt LZ}) Number of elements along the $Z$ axis.

\item $\mathcal{S}^{t}_{15}$: ({\tt NLF}) Order of the $S_N$ approximation (even number $\ge 2$).

\item $\mathcal{S}^{t}_{16}$: ({\tt ISCAT}) Number of terms in the scattering sources:
\begin{displaymath}
\mathcal{S}^{t}_{16} = \left\{
\begin{array}{rl}
 1 & \textrm{Isotropic scattering in the laboratory system} \\
 2 & \textrm{Linearly anisotropic scattering in the laboratory system} \\
 n & \textrm{order $n-1$ anisotropic scattering in the laboratory system}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{17}$: ({\tt IQUAD}) Type of angular quadrature:
\begin{displaymath}
\mathcal{S}^{t}_{17} = \left\{
\begin{array}{rl}
 1 & \textrm{Level symmetric, Lathrop and Carlson type} \\
 2 & \textrm{Level symmetric, optimized $\mu_1$ values} \\
 3 & \textrm{Level symmetric, compatible with code SNOW} \\
 4 & \textrm{Legendre-Chebyshev quadrature} \\
 5 & \textrm{symmetric Legendre-Chebyshev quadrature} \\
 6 & \textrm{quadrupole range (QR) quadrature} \\
 10 & \textrm{Gauss-Legendre and Gauss-Chebyshev product quadrature}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{18}$: ({\tt IFIX}) Flag for negative flux fixup:
\begin{displaymath}
\mathcal{S}^{t}_{18} = \left\{
\begin{array}{rl}
 0 & \textrm{Non enabled} \\
 1 & \textrm{Enabled}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{19}$: ({\tt IDSA}) Flag for synthetic diffusion acceleration:
\begin{displaymath}
\mathcal{S}^{t}_{19} = \left\{
\begin{array}{rl}
 0 & \textrm{Non enabled} \\
 1 & \textrm{Enabled}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{20}$: ({\tt NSTART}) Type of acceleration for the scattering iterations:
\begin{displaymath}
\mathcal{S}^{t}_{20} = \left\{
\begin{array}{rl}
 0 & \textrm{GMRES non enabled; use a one-parameter Livolant acceleration} \\
 >0 & \textrm{Restarts the GMRES method every {\tt NSTART} iterations}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{21}$: ({\tt NSDSA}) The synthetic acceleration is applied on every other $\mathcal{S}^{t}_{21}$ number of inner flux iterations.

\item $\mathcal{S}^{t}_{22}$: ({\tt MAXI}) Maximum number of inner iterations (resp. maximum number of GMRES(m) iterations if $\mathcal{S}^{t}_{20}>0$).

\item $\mathcal{S}^{t}_{23}$: ({\tt ILIVOL}) Flag for enabling/disabling Livolant acceleration method.
\begin{displaymath}
\mathcal{S}^{t}_{23} = \left\{
\begin{array}{rl}
 0 & \textrm{Non enabled} \\
 1 & \textrm{Enabled}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{24}$: ({\tt icl1}) number of free iterations in the Livolant method.
\item $\mathcal{S}^{t}_{25}$: ({\tt icl2}) number of accelerated iterations in the Livolant method.
\item $\mathcal{S}^{t}_{26}$: ({\tt ISPLH}) Type of hexagonal mesh splitting if $\mathcal{S}^{t}_{6}\ge 8$:
\begin{displaymath}
\mathcal{S}^{t}_{26} = \left\{
\begin{array}{rl}
 1 & \textrm{$3$ lozenges per hexagon} \\
 K & \textrm{$3\times K \times K$ lozenges per hexagon}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{27}$: (INSB) Flux vectorization option where
\begin{displaymath}
\mathcal{S}^{t}_{27} = \left\{
\begin{array}{rl}
 0 & \textrm{Scalar algorithm. The multigroup flux is computed as a sequence of one-group}\\
 & \textrm{solutions using Gauss-Seidel iterations.} \\
 1 & \textrm{Vectorial algorithm. The multigroup flux is computed in parallel for a set of energy}\\
 & \textrm{groups.}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{28}$: (NKBA) Type of swapping strategy in 2D and 3D geometries where
\begin{displaymath}
\mathcal{S}^{t}_{28} = \left\{
\begin{array}{rl}
 0 & \textrm{Standard energy group and discrete angle nested loops}\\
 M & \textrm{KBA type nested loops with $M\times M$ or $M \times M \times M$ macrocells}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{29}$: (IGAV) Type of condition at axial axis for cylindrical and spherical 1D geometries where
\begin{displaymath}
\mathcal{S}^{t}_{29} = \left\{
\begin{array}{rl}
 1 & \textrm{Specular reflection}\\
 2 & \textrm{Zero-weight reflection}\\
 3 & \textrm{Averaged reflection}\\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{30}$: ({\tt LSHOOT}) Flag for enabling/disabling the shooting method in 1D.
\begin{displaymath}
\mathcal{S}^{t}_{30} = \left\{
\begin{array}{rl}
 0 & \textrm{Non enabled} \\
 1 & \textrm{Enabled}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{31}$: ({\tt IBFP}) Type of equation solved by the discrete ordinates method.
\begin{displaymath}
\mathcal{S}^{t}_{31} = \left\{
\begin{array}{rl}
 0 & \textrm{Boltzmann transport equation} \\
 1 & \textrm{Boltzmann Fokker-Planck equation with Galerkin energy propagation factors} \\
 2 & \textrm{Boltzmann Fokker-Planck equation with Przybylski and Ligou energy propagation} \\
  & \textrm{factors}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{32}$: (NMPI) Type of MPI parallelisation strategy in 2D and 3D geometries using WYVERN where
\begin{displaymath}
\mathcal{S}^{t}_{28} = \left\{
\begin{array}{rl}
 1 & \textrm{parallelisation over number of angular directions per octant/dodecant.}\\
 M & \textrm{parallelisation over both angles and macrocells with $M\times M$ or $M \times M \times M$}\\
  & \textrm{macrocells in 2D and 3D Cartesian geometry, or $M$ macrocells along the $z$-axis}\\
  & \textrm{in hexagonal 3D geometry.}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{33}$: ({\tt ISOLVSA}) Type of solver to be used for the synthetic acceleration. Note that TRIVAC generally works better and is faster with hexagonal geometries for the matrix assemblies. Also, for 3D geometries, TRIVAC \emph{has} to be chosen.
\begin{displaymath}
\mathcal{S}^{t}_{33} = \left\{
\begin{array}{rl}
 1 & \textrm{BIVAC}\\
 2 & \textrm{TRIVAC}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{34}$: ({\tt NFOU}) Number of frequencies to be investigated in 1D Fourier analysis along the range $[0, \frac{2\pi}{L})$ where $L$ is the length of the slab.

\item $\mathcal{S}^{t}_{35}$: ({\tt EELEM}) Measure of order of the energy approximation for the continuous slowing-down term of the Boltzmann Fokker-Planck equation. The Legendre polynomials (for both HODD \emph{and} DG (see $\mathcal{S}^{t}_{36}$)) used are of order 0 (constant), 1 (linear), 2 (parabolic) or $>$3 (higher-orders), corresponding to {\tt EELEM} values of:
\begin{displaymath}
\mathcal{S}^{t}_{35} = \left\{
\begin{array}{rl}
 1 & \textrm{Constant- default for HODD} \\
 2 & \textrm{Linear - default for DG} \\
 3 & \textrm{Parabolic} \\
 >4 & \textrm{Higer-orders}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{36}$: ({\tt ESCHM}) Method of energy discretisation for the continuous slowing-down term of the Boltzmann Fokker-Planck equation:
\begin{displaymath}
\mathcal{S}^{t}_{36} = \left\{
\begin{array}{rl}
 1 & \textrm{High-Order Diamond Differencing method (HODD) -- default option if unspecified} \\
 2 & \textrm{Discontinuous Galerkin finite element method (DG) -- available if $\mathcal{S}^{t}_{6} = 2, 5,$ or $7$}\\
 3 & \textrm{Adaptive Weighted difference (AWD) -- available if $\mathcal{S}^{t}_{6} = 2, 5,$ or $7$}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{37}$: ({\tt IGLK}) Angular interpolation method, to compute the moment-to-discrete ($\shadowM$)
and discrete-to-moment ($\shadowD$) matrices:
\begin{displaymath}
\mathcal{S}^{t}_{37} = \left\{
\begin{array}{rl}
 0 & \textrm{Classical SN method -- default option if unspecified} \\
 1 & \textrm{Galerkin quadrature method where $\shadowM$ = inv($\shadowD$)}\\
 2 & \textrm{Galerkin quadrature method where $\shadowD$ = inv($\shadowM$)}
\end{array} \right.
\end{displaymath}

\end{itemize}

\clearpage

The following records will also be present on the main level of a \dir{tracking}
directory.
\begin{DescriptionEnregistrement}{The \moc{snt} records in
\dir{tracking}}{8.0cm}
\IntEnr
  {NCODE\blank{7}}{$6$}
  {Record containing the types of boundary conditions on each surface. =0 side
   not used; =1 VOID; =2 REFL; =4 TRAN. {\tt NOODE(5)} and {\tt NOODE(6)} are not used.} 
\RealEnr
  {ZCODE\blank{7}}{$6$}{$1$}
  {Record containing the albedo value (real number) on each surface. {\tt ZOODE(5)}
   and {\tt ZOODE(6)} are not used.} 
\IntEnr
  {KEYFLX\$ANIS\blank{1}}{$\mathcal{S}^t_1,(\mathcal{S}^{t}_{8})^{\mathcal{S}^{t}_{9}},\mathcal{S}^{t}_{7}$}
  {Location in unknown vector of averaged regional flux moments.} 
\OptDirEnr
  {DSA\blank{9}}{$\mathcal{S}^{t}_{19}= 1$}
  {Sub-directory containing the data related to the diffusion synthetic acceleration using BIVAC (2D) or TRIVAC (3D).
  The specification of this directory is given in \Sect{bivactrackingdir} or in \Sect{trivatrackingdir} } 
\RealEnr
  {EPSI\blank{8}}{$1$}{$1$}
  {Record containing the convergence criterion on inner iterations.}
\IntEnr
  {IL\blank{9}}{$\mathcal{S}^{t}_{7}$}
  {Record containing the Legendre degree associated with each angular interpolation basis (spherical harmonics).} 
\IntEnr
  {IM\blank{9}}{$\mathcal{S}^{t}_{7}$}
  {Record containing the azimuthal index associated with each angular interpolation basis (spherical harmonics).} 

\end{DescriptionEnregistrement}

If $\mathcal{S}^{t}_{6}=2$ (Cartesian 1-D geometry), the following records will also be present on the main level of a \dir{tracking}
directory.

\begin{DescriptionEnregistrement}{The \moc{snt} records in
\dir{tracking} (Cartesian 1-D geometry)}{8.0cm}
\RealEnr
  {U\blank{11}}{$\mathcal{S}^{t}_{15}$}{$1$}
  {Base points of the angular Gauss-Legendre quadrature.} 
\RealEnr
  {W\blank{11}}{$\mathcal{S}^{t}_{15}$}{$1$}
  {Weights of the angular Gauss-Legendre quadrature.} 
\RealEnr
  {PL\blank{10}}{$\mathcal{S}^{t}_{16},\mathcal{S}^{t}_{15}$}{$1$}
  {Discrete values of the Legendre polynomials on the quadrature base points.} 
\RealEnr
  {WX\blank{10}}{$\mathcal{S}^{t}_{8}+1$}{$1$}
  {Weights of the incoming and moments fluxes in the spatial closure relations for the streaming term.}
\OptRealEnr
  {WE\blank{10}}{$\mathcal{S}^{t}_{35}+1$}{$\mathcal{S}^{t}_{31}\neq 0$}{$1$}
  {Weights of the incoming and moments fluxes in the energy closure relations for the continuous slowing-down term of the Boltzmann Fokker-Planck equation.}
\RealEnr
  {CST\blank{9}}{max\{$\mathcal{S}^{t}_{8},\mathcal{S}^{t}_{35}$\}}{$1$}
  {Normalized Legendre polynomials (defined over -1/2 to 1/2) value at boundaries.}
\RealEnr
  {MN\blank{10}}{$\mathcal{S}^{t}_{15},\mathcal{S}^{t}_{7}$}{$1$}
  {Moment-to-discrete matrix $\shadowM$.} 
\RealEnr
  {DN\blank{10}}{$\mathcal{S}^{t}_{7},\mathcal{S}^{t}_{15}$}{$1$}
  {Discrete-to-moment matrix $\shadowD$.} 
\end{DescriptionEnregistrement}

If $\mathcal{S}^{t}_{6}=3$ (Tube 1-D geometry), the following records will also be present on the main level of a \dir{tracking}
directory. The number of discrete directions in two octants $N_{\rm angl}$ and the number of spherical harmonics components of the flux $N_{\rm pn}$
are given in term of the $S_N$ order $N=\mathcal{S}^{t}_{15}$ as
$$
N_{\rm angl}=\cases{{\displaystyle 1\over \displaystyle 2}N\left(1+{\displaystyle N\over \displaystyle 2}\right),
&if $\mathcal{S}^{t}_{17}<10$;\cr {\displaystyle 1\over \displaystyle 2}N^2, &otherwise. \cr}
$$
$$
N_{\rm pn}={\mathcal{S}^{t}_{16}\over 2}\left( 1+{\mathcal{S}^{t}_{16}\over 2}\right)+
{1\over 2} (1+\mathcal{S}^{t}_{16})\, (\mathcal{S}^{t}_{16}{\rm mod} \, 2)
$$

\begin{DescriptionEnregistrement}{The \moc{snt} records in
\dir{tracking} (tube 1-D geometry)}{8.0cm}
\IntEnr
  {JOP\blank{9}}{$N/2$}
  {Number of base points in each $\xi$ level.} 
\RealEnr
  {U\blank{11}}{$N/2$}{$1$}
  {Base points (levels) of the angular quadrature in $\xi$ (positive values).} 
\RealEnr
  {UPQ\blank{9}}{$N_{\rm angl}$}{$1$}
  {Direction cosines of the angular two-octants spherical harmonics quadrature in $\mu$.} 
\RealEnr
  {WPQ\blank{9}}{$N_{\rm angl}$}{$1$}
  {Weights of the angular two-octants spherical harmonics quadrature.} 
\RealEnr
  {ALPHA\blank{7}}{$N_{\rm angl}$}{$1$}
  {Angular redistribution parameters.} 
\RealEnr
  {PLZ\blank{9}}{$N_{\rm pn},N/2$}{$1$}
  {Discrete values of the real spherical harmonics on the zero-weight base points.} 
\RealEnr
  {PL\blank{10}}{$N_{\rm pn},N_{\rm angl}$}{$1$}
  {Discrete values of the real spherical harmonics on the quadrature base points.} 
\RealEnr
  {SURF\blank{8}}{$\mathcal{S}^{t}_{12}+1$}{$1$}
  {Surfaces.} 
\end{DescriptionEnregistrement}

\clearpage

If $\mathcal{S}^{t}_{6}=4$ (Spherical 1-D geometry), the following records will also be present on the main level of a \dir{tracking}
directory.

\begin{DescriptionEnregistrement}{The \moc{snt} records in
\dir{tracking} (spherical 1-D geometry)}{8.0cm}
\RealEnr
  {U\blank{11}}{$\mathcal{S}^{t}_{15}$}{$1$}
  {Base points of the angular Gauss-Legendre quadrature.} 
\RealEnr
  {W\blank{11}}{$\mathcal{S}^{t}_{15}$}{$1$}
  {Weights of the angular Gauss-Legendre quadrature.} 
\RealEnr
  {ALPHA\blank{7}}{$\mathcal{S}^{t}_{15}$}{$1$}
  {Angular redistribution parameters.} 
\RealEnr
  {PLZ\blank{9}}{$\mathcal{S}^{t}_{16}$}{$1$}
  {Discrete values of the Legendre polynomials on the zero-weight base points at $\mu=-1$.} 
\RealEnr
  {PL\blank{10}}{$\mathcal{S}^{t}_{16},\mathcal{S}^{t}_{15}$}{$1$}
  {Discrete values of the Legendre polynomials on the quadrature base points.} 
\RealEnr
  {SURF\blank{8}}{$\mathcal{S}^{t}_{12}+1$}{$1$}
  {Surfaces.} 
\RealEnr
  {XXX\blank{9}}{$\mathcal{S}^{t}_{12}+1$}{$1$}
  {Mesh-edge radii.} 
\end{DescriptionEnregistrement}

If $\mathcal{S}^{t}_{6}=5$ (Cartesian 2-D geometry) or $\mathcal{S}^{t}_{6}=6$ (R-Z geometry), the following records will also be present on the main level of a \dir{tracking}
directory. The number of discrete directions in four octants (including zero-weight points) $N_{\rm angl}$ is given by
$$
N_{\rm angl}={1\over 2}(N+4)N
$$

\begin{DescriptionEnregistrement}{The \moc{snt} records in
\dir{tracking} (2-D and R-Z geometries)}{8.0cm}
\RealEnr
  {DU\blank{10}}{$N_{\rm angl}$}{$1$}
  {Direction cosines of the angular four-octants spherical harmonics quadrature in $\mu$.} 
\RealEnr
  {DE\blank{10}}{$N_{\rm angl}$}{$1$}
  {Direction cosines of the angular four-octants spherical harmonics quadrature in $\eta$.} 
\RealEnr
  {W\blank{11}}{$N_{\rm angl}$}{$1$}
  {Weights of the angular four-octants spherical harmonics quadrature.} 
\IntEnr
  {MRM\blank{9}}{$N_{\rm angl}$}
  {Quadrature offsets.} 
\IntEnr
  {MRMY\blank{8}}{$N_{\rm angl}$}
  {Quadrature offsets.} 
\RealEnr
  {DB\blank{10}}{$\mathcal{S}^{t}_{12},N_{\rm angl}$}{$1$}
  {Diamond-scheme parameter.} 
\RealEnr
  {DA\blank{10}}{$\mathcal{S}^{t}_{12},\mathcal{S}^{t}_{13},N_{\rm angl}$}{$1$}
  {Diamond-scheme parameter.} 
\OptRealEnr
  {DAL\blank{9}}{$\mathcal{S}^{t}_{12},\mathcal{S}^{t}_{13},N_{\rm angl}$}{$\mathcal{S}^{t}_{6}=6$}{$1$}
  {Angular redistribution parameters.} 
\RealEnr
  {PL\blank{10}}{$\mathcal{S}^{t}_{7},N_{\rm angl}$}{$1$}
  {Discrete values of the real spherical harmonics on the quadrature base points.} 
\RealEnr
  {WX\blank{10}}{$\mathcal{S}^{t}_{8}+1$}{$1$}
  {Weights of the incoming and moments fluxes in the spatial closure relations for the streaming term.}
\OptRealEnr
  {WE\blank{10}}{$\mathcal{S}^{t}_{35}+1$}{$\mathcal{S}^{t}_{31}\neq0$}{$1$}
  {Weights of the incoming and moments fluxes in the energy closure relations for the continuous slowing-down term of the Boltzmann Fokker-Planck equation.}
\RealEnr
  {CST\blank{9}}{max\{$\mathcal{S}^{t}_{8},\mathcal{S}^{t}_{35}$\}}{$1$}
  {Normalized Legendre polynomials (defined over -1/2 to 1/2) value at boundaries.}
\RealEnr
  {MN\blank{10}}{$N_{\rm angl},\mathcal{S}^{t}_{7}$}{$1$}
  {Moment-to-discrete matrix $\shadowM$.} 
\RealEnr
  {DN\blank{10}}{$\mathcal{S}^{t}_{7},N_{\rm angl}$}{$1$}
  {Discrete-to-moment matrix $\shadowD$.} 
\OptRealEnr
  {SIDE\blank{8}}{1}{$\mathcal{S}^{t}_{6}\geq8$}{cm}
  {Length of the side of each hexagon element.} 
\OptIntEnr
  {LOZSWP\blank{6}}{3,6}{$\mathcal{S}^{t}_{6}\geq8$}{Lozenge sweep order depending on direction.} 
\OptIntEnr
  {COORDMAP\blank{4}}{3,$\mathcal{S}^{t}_{12}/(3\times(\mathcal{S}^{t}_{26})^2)$}{$\mathcal{S}^{t}_{6}\geq8$}{Coordinate map mapping each hexagon from DRAGON geometry indices to the axial coordinate system, using $p$, $r$, $s$ axes.} 
\end{DescriptionEnregistrement}

If $\mathcal{S}^{t}_{6}=7$ (Cartesian 3-D geometry), the following records will also be present on the main level of a \dir{tracking}
directory. The number of discrete directions in height octants  $N_{\rm angl}$ is given by
$$
N_{\rm angl}=(N+2)N
$$

\begin{DescriptionEnregistrement}{The \moc{snt} records in
\dir{tracking} (3-D geometry)}{8.0cm}
\RealEnr
  {DU\blank{10}}{$N_{\rm angl}$}{$1$}
  {Direction cosines of the angular height-octants spherical harmonics quadrature in $\mu$.} 
\RealEnr
  {DE\blank{10}}{$N_{\rm angl}$}{$1$}
  {Direction cosines of the angular height-octants spherical harmonics quadrature in $\eta$.} 
\RealEnr
  {DZ\blank{10}}{$N_{\rm angl}$}{$1$}
  {Direction cosines of the angular height-octants spherical harmonics quadrature in $\xi$.} 
\RealEnr
  {W\blank{11}}{$N_{\rm angl}$}{$1$}
  {Weights of the angular height-octants spherical harmonics quadrature.} 
\IntEnr
  {MRMX\blank{8}}{$N_{\rm angl}$}
  {Quadrature offsets.} 
\IntEnr
  {MRMY\blank{8}}{$N_{\rm angl}$}
  {Quadrature offsets.} 
\IntEnr
  {MRMZ\blank{8}}{$N_{\rm angl}$}
  {Quadrature offsets.} 
\RealEnr
  {DC\blank{10}}{$\mathcal{S}^{t}_{12},\mathcal{S}^{t}_{13},N_{\rm angl}$}{$1$}
  {Diamond-scheme parameter.} 
\RealEnr
  {DB\blank{10}}{$\mathcal{S}^{t}_{12},\mathcal{S}^{t}_{14},N_{\rm angl}$}{$1$}
  {Diamond-scheme parameter.} 
\RealEnr
  {DA\blank{10}}{$\mathcal{S}^{t}_{13},\mathcal{S}^{t}_{14},N_{\rm angl}$}{$1$}
  {Diamond-scheme parameter.} 
\RealEnr
  {PL\blank{10}}{$\mathcal{S}^{t}_{7},N_{\rm angl}$}{$1$}
  {Discrete values of the real spherical harmonics on the quadrature base points.} 
\RealEnr
  {WX\blank{10}}{$\mathcal{S}^{t}_{8}+1$}{$1$}
  {Weights of the incoming and moments fluxes in the spatial closure relations for the streaming term.}
\OptRealEnr
  {WE\blank{10}}{$\mathcal{S}^{t}_{35}+1$}{$\mathcal{S}^{t}_{31}\neq0$}{$1$}
  {Weights of the incoming and moments fluxes in the energy closure relations for the continuous slowing-down term of the Boltzmann Fokker-Planck equation.}
\RealEnr
  {CST\blank{9}}{max\{$\mathcal{S}^{t}_{8},\mathcal{S}^{t}_{35}$\}}{$1$}
  {Normalized Legendre polynomials (defined over -1/2 to 1/2) value at boundaries.}
\RealEnr
  {MN\blank{10}}{$N_{\rm angl},\mathcal{S}^{t}_{7}$}{$1$}
  {Moment-to-discrete matrix $\shadowM$.} 
\RealEnr
  {DN\blank{10}}{$\mathcal{S}^{t}_{7},N_{\rm angl}$}{$1$}
  {Discrete-to-moment matrix $\shadowD$.} 
\OptRealEnr
  {SIDE\blank{8}}{1}{$\mathcal{S}^{t}_{6}\geq8$}{cm}
  {Length of the side of each hexagon element.} 
\OptIntEnr
  {LOZSWP\blank{6}}{3,6}{$\mathcal{S}^{t}_{6}\geq8$}{Lozenge sweep order depending on direction.} 
\OptIntEnr
  {COORDMAP\blank{4}}{3,$\mathcal{S}^{t}_{12}/(3\times(\mathcal{S}^{t}_{26})^2)$}{$\mathcal{S}^{t}_{6}\geq8$}{Coordinate map mapping each hexagon from DRAGON geometry indices to the axial coordinate system, using $p$, $r$, $s$ axes.} 
\end{DescriptionEnregistrement}

\eject