1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
|
\section{Contents of a \dir{microlib} directory}\label{sect:microlibdir}
A \dir{microlib} directory contains the set of multigroup microscopic
cross sections associated with a set of isotopes. It also includes a \dir{macrolib} directory
where the macroscopic cross sections for the mixtures to which are associated these
isotopes are stored (see \Sect{macrolibdir}). Finally it may contains a \dir{depletion} directory
(see \Sect{microlibdirdepletion}) which is required for burnup calculation and a \dir{selfshield}
directory which is generated by the \moc{SHI:} or \moc{USS:} operator (see
\Sect{subgroupdirselfshield}). It is
therefore multi-level, namely, it contains sub-directories. Note that the contents of such a
directory will vary depending on the operator which was used to create or modify it. Here for
convenience we will define the variable
$\mathcal{M}$ to identify the creation operator:
\begin{displaymath}
\mathcal{M} = \left\{
\begin{array}{ll}
1 & \textrm{if the microlib is created or modified by the \moc{LIB:} or \moc{EVO:} operator}\\
2 & \textrm{if the microlib is created or modified by the \moc{EDI:} or
\moc{C2M:} operator}\\
3 & \textrm{if the microlib is modified by the \moc{SHI:} or \moc{USS:} operator}\\
4 & \textrm{if the microlib is part of a {\sc compo} object and is created by the \moc{COMPO:} operator}
\end{array} \right.
\end{displaymath}
In the case where the \moc{LIB:} or \moc{C2M:} operator is used to create the microlib, it appears on the root
level of the data structure. For the other case it is embedded as a
subdirectory of a surrounding data structure.
\subsection{State vector content for the \dir{microlib} data structure}\label{sect:microlibstate}
The dimensioning parameters for the \dir{microlib} data structure, which are stored in
the state vector $\mathcal{S}^{m}$, represent:
\begin{itemize}
\item The maximum number of mixtures $M_{m}=\mathcal{S}^{m}_{1}$
\item The number of isotopes $N_{I}=\mathcal{S}^{m}_{2}$
\item The number of groups ${G}=\mathcal{S}^{m}_{3}$
\item The order for the scattering anisotropy $L=\mathcal{S}^{m}_{4}$
($L=1$ is an isotropic collision; $L=2$ is a linearly anisotropic collision,
etc.)
\item The transport correction option $I_{tr}=\mathcal{S}^{m}_{5}$
\begin{displaymath}
I_{tr} = \left\{
\begin{array}{ll}
0 & \textrm{do not use a transport correction}\\
1 & \textrm{use an APOLLO-type transport correction (micro-reversibility at
all energies)}\\
2 & \textrm{recover a transport correction from the cross-section library}\\
3 & \textrm{use a WIMS-type transport correction (micro-reversibility below
4eV;}\\
& \textrm{1/E current spectrum elsewhere)}\\
4 & \textrm{use a leakage correction based on {\tt NTOT1} data.}
\end{array} \right.
\end{displaymath}
\item Format of the included \dir{macrolib} $I_{p}=\mathcal{S}^{m}_{6}$
\begin{displaymath}
I_{p} = \left\{
\begin{array}{ll}
0 & \textrm{for the direct macroscopic cross sections} \\
1 & \textrm{for the adjoint macroscopic cross sections}
\end{array} \right.
\end{displaymath}
\item Option for removing delayed neutron effects from the \dir{microlib}
$I_{t}=\mathcal{S}^{m}_{7}$
\begin{displaymath}
I_{t} = \left\{
\begin{array}{ll}
1 & \textrm{include the delayed and prompt neutron effect} \\
2 & \textrm{consider only the prompt neutrons. This option is only available
with}\\
& \textrm{MATXS--type libraries.}
\end{array} \right.
\end{displaymath}
\item The number of independent libraries $N_{\mathrm{lib}}=\mathcal{S}^{m}_{8}$
\item The number of fast groups without self-shielding $N_{g,f}=\mathcal{S}^{m}_{9}$
Represents the number of fast energy groups to be treated without including resonance
effects. It is automatically determined from the cross-section libraries. This value,
which is only used by the self-shielding operator, can be modified using the keyword \moc{GRMAX}.
\item The maximum index of all groups with self-shielding $N_{g,e}=\mathcal{S}^{m}_{10}$.
In the case of a WIMS--type library, it represents the total number of energy groups above
$4.0$ eV. Otherwise, it is automatically determined from the cross-section libraries. This
value, is used by the self-shielding operator and can be modified locally in
this operator using the keyword \moc{GRMIN}.
\item The number of depleting isotopes $N_{d}=\mathcal{S}^{m}_{11}$
\item The number of depleting mixtures $N_{d,f}=\mathcal{S}^{m}_{12}$
\item The number of additional $\phi$--weighted editing cross sections $N_{e}=\mathcal{S}^{m}_{13}$
\item The number of mixtures $N_{m}=\mathcal{S}^{m}_{14}$
\item The number of resonant mixtures $N_{r}=\mathcal{S}^{m}_{15}$
\item The number of energy-dependent fission spectra $G_{\rm chi}=\mathcal{S}^{m}_{16}$. By default ($G_{\rm chi}=0$),
a unique fission spectrum is used. The theory of multiple fission spectra is presented in Ref.~\citen{mosca}.
\item Option for processing the cross-section libraries $I_{\rm proc}=\mathcal{S}^{m}_{17}$
\begin{displaymath}
I_{\rm proc} = \left\{
\begin{array}{ll}
-1 & \textrm{skip the library processing (i.e., no interpolation).} \\
0 & \textrm{perform an interpolation in temperature and dilution.} \\
1 & \textrm{perform an interpolation in temperature and compute probability} \\
& \textrm{tables based on the tabulation in dilution.} \\
2 & \textrm{perform an interpolation in temperature and build a new temperature-} \\
& \textrm{independent cross-section library in \dir{microlib} format.} \\
3 & \textrm{perform an interpolation in temperature and compute CALENDF--type} \\
& \textrm{mathematical probability tables based on BIN--type cross sections. Do} \\
& \textrm{not compute the slowing-down correlated weight matrices. Option} \\
& \textrm{compatible with the subgroup projection method (SPM).} \\
4 & \textrm{perform an interpolation in temperature and compute CALENDF--type} \\
& \textrm{mathematical probability tables and slowing-down correlated weight} \\
& \textrm{matrices based on BIN--type cross sections. Option compatible with} \\
& \textrm{the Ribon extended method.} \\
5 & \textrm{perform an interpolation in temperature and compute CALENDF--type} \\
& \textrm{mathematical probability tables based on BIN--type cross sections. This} \\
& \textrm{option is similar to the $I_{\rm proc} =3$ procedure. Here, the base points of the} \\
& \textrm{probability tables corresponding to fission and scattering cross sections} \\
& \textrm{and to components of the transfer scattering matrix are also obtained} \\
& \textrm{using the CALENDF approach.} \\
6 & \textrm{perform an interpolation in temperature and compute RSE--type proba-} \\
& \textrm{bility tables based on BIN--type cross sections. RSE is the resonance} \\
& \textrm{spectrum expansion method.} \\
\end{array} \right.
\end{displaymath}
\item Option for computing the macrolib $I_{\rm mac}=\mathcal{S}^{m}_{18}$
\begin{displaymath}
I_{\rm mac} = \left\{
\begin{array}{ll}
0 & \textrm{do not build an embedded macrolib.} \\
1 & \textrm{build an embedded macrolib. Mandatory if the microlib is to be used to} \\
& \textrm{perform micro-depletion.}
\end{array} \right.
\end{displaymath}
\item The number of precursor groups producing delayed neutrons $N_{\rm del}=\mathcal{S}^{m}_{19}$.
\item The number of fissile isotopes producing fission products with {\tt PYIELD} data $N_{\rm dfi}=\mathcal{S}^{m}_{20}$ (see Table~\ref{tabl:tabiso3})
\item Option for completing the depletion chains with the missing isotopes $I_{\rm cmp}=\mathcal{S}^{m}_{21}$
\begin{displaymath}
I_{\rm cmp} = \left\{
\begin{array}{ll}
0 & \textrm{complete} \\
1 & \textrm{do not complete.}
\end{array} \right.
\end{displaymath}
\item The maximum number of isotopes per mixture $M_{\rm I}=\mathcal{S}^{m}_{22}$.
\item An integer index (1, 2, 3 or 4) used to set the accuracy of the CALENDF probability
tables. The highest the value, the more accurate are the tables. $N_{\rm
ipreci}=\mathcal{S}^{m}_{23}$.
\item Discontinuity factor flag $I_{\rm df}=\mathcal{S}^{m}_{24}$. This information is available in \dir{macrolib} directory (see \Sect{macrolibdir})
\begin{displaymath}
I_{\rm df} = \left\{
\begin{array}{ll}
0 & \textrm{no discontinuity factor information}\\
1 & \textrm{multigroup boundary current information is available}\\
2 & \textrm{boundary flux information (see \Sect{macroADF}) is available}\\
3 & \textrm{discontinuity factor information (see \Sect{macroADF}) is available}\\
4 & \textrm{matrix ($G \times G$) discontinuity factor information (see \Sect{macroADF}) is available.}
\end{array} \right.
\end{displaymath}
\item The maximum Legendre order of the weighting functions $I_{w}=\mathcal{S}^{m}_{25}$
\begin{displaymath}
I_{w} = \left\{
\begin{array}{ll}
0 & \textrm{use the flux as weighting function for all cross sections}\\
1 & \textrm{use the fundamental current ${\cal J}$ as weighting function for
scattering cross sections}\\
& \textrm{with order $\ge 1$ and compute both $\phi$-- and
${\cal J}$--weighted total cross sections.}
\end{array} \right.
\end{displaymath}
\item Number of companion particles in coupled sets $I_{\rm part}=\mathcal{S}^{M}_{26}$
\begin{displaymath}
I_{\rm part} = \left\{
\begin{array}{ll}
0 & \textrm{the microlib doesn't include coupled sets}\\
>0 & \textrm{number of companion particles.}
\end{array} \right.
\end{displaymath}
\item Option for performing the Sternheimer density correction for charged particle cases $I_{\rm ster}=\mathcal{S}^{m}_{27}$
\begin{displaymath}
I_{\rm ster} = \left\{
\begin{array}{ll}
0 & \textrm{do not perform the correction.} \\
1 & \textrm{perform Sternheimer correction applied for both restricted total stopping power}\\
& \textrm{and heat deposition cross section.}
\end{array} \right.
\end{displaymath}
\end{itemize}
\goodbreak
\clearpage
\subsection{The main \dir{microlib} directory}\label{sect:microlibdirmain}
The following records and sub-directories will be found on the first level of a \dir{microlib}
directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{microlib}}{7.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{Signature of the \dir{microlib} data structure ($\mathsf{SIGNA}=${\tt L\_LIBRARY\blank{3}}).}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{m}_{i}$,
as defined in \Sect{microlibstate}.}
\RealEnr
{ENERGY\blank{6}}{$G+1$}{eV}
{Energy groups limits $E_{g}$}
\RealEnr
{DELTAU\blank{6}}{$G$}{}
{Lethargy width of each group $U_{g}$}
\OptRealEnr
{CHI-ENERGY\blank{2}}{$G_{\rm chi}+1$}{$G_{\rm chi}\ne 0$}{eV}
{$E_{\rm chi}(g)$: Group energy limits defining the energy-dependent fission spectra. By default, a unique fission spectra is used.}
\OptIntEnr
{CHI-LIMITS\blank{2}}{$G_{\rm chi}+1$}{$G_{\rm chi}\ne 0$}
{$N_{\rm chi}(g)$: Group limit indices defining the energy-dependent fission spectra. By default, a unique fission spectra is used.}
\DirlEnr
{ISOTOPESLIST}{$N_{I}$}
{List of {\sc isotope} directories. Each component of this list follows the \dir{isotope} specification
presented in Tables~\ref{tabl:tabiso1} to \ref{tabl:tabiso5} and is containing the cross section
information associated with a specific isotope. The name of these isotopes is specified by
$\mathsf{NALIAS}_{i}$ as given in record {\tt ISOTOPESUSED}.}
\CharEnr
{ISOTOPESUSED}{$(N_{I})*12$}
{Alias name associated with each isotope $\mathsf{NALIAS}_{i}$. The first eight characters of the name of a macroscopic residual are set to {\tt '*MAC*RES'}.}
\OptCharEnr
{ISOTOPERNAME}{$(N_{I})*12$}{$\mathcal{M}=1,3$}
{Reference name associated with each isotope $\mathsf{NISO}_{i}$}
\OptIntEnr
{ISOTOPESMIX\blank{1}}{$N_{I}$}{$\mathcal{M}\ne 4$}
{Mixture number associated with each isotope $N_{I}$}
\RealEnr
{ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}\ $}
{Isotopic density $\rho_{i}$}
\RealEnr
{ISOTOPESTEMP}{$N_{I}$}{K}
{Isotope temperature $T_{i}$}
\OptIntEnr
{ISOTOPESTODO}{$N_{I}$}{$\mathcal{M}=1,3$}
{=0: automatic detection of depletion for isotope $i$; =1: isotope $i$ is
forced to be non depleting (keeps its capability to produce energy); =2: isotope $i$ is
forced to be depleting; =3: isotope $i$ is at saturation.}
\IntEnr
{ISOTOPESTYPE}{$N_{I}$}
{Type index associated with each isotope $\mathsf{ITYP}_{i}$. $=1$: the isotope is
not fissile and not a fission product; $=2$: fissile isotope; $=3$: fission
product.}
\OptRealEnr
{ISOTOPESVOL\blank{1}}{$N_{I}$}{$\mathcal{M}=2, 4$}{cm$^{3}$}
{Volume occupied by isotope $V_{i}$}
\OptCharEnr
{ILIBRARYTYPE}{$(N_{I})*8$}{$N_{\mathrm{lib}}\ge 1$}
{Library type associated with each isotope $\mathsf{NLTY}_{i}$}
\OptCharEnr
{ILIBRARYNAME}{$(N_{\mathrm{lib}})*64$}{$N_{\mathrm{lib}}\ge 1$}
{Name associated with each cross-section library}
\OptIntEnr
{ILIBRARYINDX}{$N_{I}$}{$N_{\mathrm{lib}}\ge 1$}
{Index of the cross-section library associated with each isotope $1 \le \mathsf{LLIB}_{i}\le N_{\mathrm{lib}}$}
\OptCharEnr
{ISOTOPESCOH\blank{1}}{$(N_{I})*8$}{$N_{\mathrm{lib}}\ge 1$}
{Name of coherent scattering type at thermal energies $\mathsf{NCOH}_{i}$}
\OptCharEnr
{ISOTOPESINC\blank{1}}{$(N_{I})*8$}{$N_{\mathrm{lib}}\ge 1$}
{Name of incoherent scattering type at thermal energies $\mathsf{NINC}_{i}$}
\OptCharEnr
{ISOTOPESRESK}{$(N_{I})*8$}{$N_{\mathrm{lib}}\ge 1$}
{Name of resonance elastic scattering kernel (RESK) type at epithermal energies $\mathsf{NRSK}_{i}$}
\OptIntEnr
{ISOTOPESNTFG}{$N_{I}$}{$N_{\mathrm{lib}}\ge 1$}
{Number of thermal groups involved in coherent or incoherent scattering $G_{s,i}$}
\OptCharEnr
{ISOTOPESHIN\blank{1}}{$(N_{I})*12$}{$N_{\mathrm{lib}}\ge 1$}
{Name of resonant isotope associated with each isotope $\mathsf{NSHI}_{i}$}
\OptIntEnr
{ISOTOPESSHI\blank{1}}{$N_{I}$}{$N_{\mathrm{lib}}\ge 1$}
{Resonant mixture associated with each isotope $I_{R,i}$}
\OptRealEnr
{ISOTOPESDSN\blank{1}}{$G \times N_{I}$}{${\displaystyle N_{\mathrm{lib}}\ge 1 \atop
\displaystyle I_{\rm proc}=0}$}{b}
{Standard dilution cross section for isotope $\sigma_{\mathrm{dil},i}$ in each energy group}
\OptRealEnr
{ISOTOPESDSB\blank{1}}{$G \times N_{I}$}{${\displaystyle N_{\mathrm{lib}}\ge 1 \atop
\displaystyle I_{\rm proc}=0}$}{b}
{Livolant-Jeanpierre dilution cross section for isotope $\sigma_{\mathrm{LJ},i}$ in each energy group}
\OptIntEnr
{ISOTOPESNIR\blank{1}}{$N_{I}$}{$N_{\mathrm{lib}}\ge 1$}
{Use Goldstein-Cohen factor $\lambda_i$ in groups with index $\ge N^{\rm ir}_i$.
Use $\lambda=1$ in other groups}
\OptRealEnr
{ISOTOPESGIR\blank{1}}{$N_{I}$}{$N_{\mathrm{lib}}\ge 1$}{1}
{Goldstein-Cohen parameter in low-energy resonant groups $\lambda_i$. Set to -998.0 if
$I_{\rm proc}=3$, to -999.0 if $I_{\rm proc}=4$, to -1000.0 if $I_{\rm proc}=5$ and to -1001.0 if $I_{\rm proc}=6$.}
\OptRealEnr
{MIXTURESVOL\blank{1}}{$N_{m}$}{$\mathcal{M}=2, 4$}{cm$^{3}$}
{Volume occupied by each mixture}
\OptRealEnr
{MIXTURESDENS}{$N_{m}$}{$\mathcal{M}=1$}{g/cm$^{3}$~~}
{Volumetric mass density of each mixture $\rho_{m}$}
\OptCharEnr
{ADDXSNAME-P0}{$(N_{e})*8$}{$N_{e}\ge 1$}
{Names of the additional $\phi$--weighted editing cross sections $\mathsf{ADDXS}_{k}$ stored on \dir{macrolib}}
\OptCharEnr
{PARTICLE\blank{4}}{$*1$}{$I_{\rm part}\ge 1$}
{Character name of the particle associated to the microlib. Usual names for
particles are {\tt N} (neutrons), {\tt G} (photons), {\tt B} (electrons),
{\tt C} (positrons) and {\tt P} (protons).}
\OptCharEnr
{PARTICLE-NAM}{($I_{\rm part}+1$)$*1$}{$I_{\rm part}\ge 1$}
{Character name associated to each particle.}
\OptIntEnr
{PARTICLE-NGR}{$I_{\rm part}+1$}{$I_{\rm part}\ge 1$}
{Number of energy groups associated to each particle.}
\OptRealEnr
{PARTICLE-MC2}{$I_{\rm part}+1$}{$I_{\rm part}\ge 1$}{eV}
{Rest energy associated to each particle.}
\OptRealVar
{\listedir{penergy}}{$G_i+1$}{$I_{\rm part}\ge 1$}{eV}
{Set of arrays containing energy groups limits for a companion particle. The character name
of each sub-directory is the concatenation of the character*1 name of the particle with ``{\tt ENERGY}''.
For example, {\tt GENERGY} contains the energy mesh of secondary photons ($G_i+1$ values).}
\OptRealEnr
{TIMESPER\blank{4}}{$2\times 3$}{$\mathcal{M}=2$}{}
{Array $T_{j,i}$ that contains $T_{j,1}=t$, $T_{j,2}=B$ and $T_{j,3}=w$, the
lower ($j=1$) and upper bounds ($j=2$) for the reference time in days, burnup
in MW day T$^{-1}$ and irradiation in Kb$^{-1}$ respectively for which the
perturbative expansion is valid}
\OptRealEnr
{K-EFFECTIVE\blank{1}}{$1$}{*}{}
{Effective multiplication constant $k_{\mathrm{eff}}$}
\OptRealEnr
{K-INFINITY\blank{2}}{$1$}{*}{}
{Infinite multiplication constant $k_{\mathrm{inf}}$}
\OptRealEnr
{B2\blank{2}B1HOM\blank{3}}{$1$}{*}{cm$^{-2}$~~}
{Homogeneous Buckling $B_{\mathrm{hom}}$}
\OptDirEnr
{MACROLIB\blank{4}}{$I_{\rm mac} = 1$}
{Sub-directory containing the \dir{macrolib} associated with this
library, following the specification presented in \Sect{macrolibdirmain}.}
\OptDirEnr
{DEPL-CHAIN\blank{2}}{$N_{d} \ge 1$}
{Sub-directory containing the \dir{depletion} associated with this library, following
the specification presented in \Sect{microlibdirdepletion}.}
\OptDirEnr
{SHIBA\blank{7}}{$\mathcal{M}=3$}
{Sub-directory containing the \dir{selfshield} associated with this
library, following the specification presented in \Sect{shibadirselfshield}.
This data is used by the \moc{SHI:} self-shielding module.}
\OptDirEnr
{SHIBA\_SG\blank{4}}{$\mathcal{M}=3$}
{Sub-directory containing the \dir{uss-selfshield} associated with this
library, following the specification presented in \Sect{subgroupdirselfshield}.
This sub-directory is present in the library builded by \moc{USS:} self-shielding module and used by \moc{USS:}.}
\IntEnr
{MIXTUREGAS\blank{2}}{$N_{m}$}
{State of each mixture (used for stopping power correction).}
\OptDirEnr
{INDEX\blank{7}}{*}
{Sub-directory containing indexing or table-of-content data for specific library
files}
\end{DescriptionEnregistrement}
One will find in \Sect{macrolibdir} the description of a
\dir{macrolib} directory and in
\Sect{isotopedir} the contents of an \dir{isotope} directory. Note that if $N_{I}=2$ and
\begin{displaymath}
\mathsf{NALIAS}_{i} = \left\{
\begin{array}{lll}
\texttt{U235 0001} & \textrm{for}& i=1\\
\texttt{Pu239 0003} & \textrm{for}& i=2
\end{array} \right.
\end{displaymath}
then \listedir{isotope} will correspond to the following two directories:
\begin{DescriptionEnregistrement}{Examples of isotopes directory in a \dir{microlib}}{7.5cm}
\DirEnr
{U235\blank{4}0001}
{Directory where the microscopic cross sections of \Iso{U}{235} are stored. These are
self-shielded cross section already interpolated in temperature. They correspond to the
properties of mixture $1$}
\DirEnr
{Pu239\blank{3}0003}
{Directory where the microscopic cross sections of \Iso{Pu}{239} are stored. These are
self-shielded cross section already interpolated in temperature. They correspond to the
properties of mixture $3$}
\end{DescriptionEnregistrement}
\subsection{State vector content for the depletion sub-directory}\label{sect:chainlibstate}
The dimensioning parameters for the depletion sub-directory, which are stored in
the state vector $\mathcal{S}^{d}$, represent:
\begin{itemize}
\item The number of depleting isotopes $N_{\mathrm{depl}}=\mathcal{S}^{d}_{1}$
\item The number of direct fissile isotopes (i.e., producing fission products) $N_{\mathrm{dfi}}=\mathcal{S}^{d}_{2}$
\item The number of fission fragments $N_{\mathrm{dfp}}=\mathcal{S}^{d}_{3}$. A fission fragment is produced directly by the
fission reaction. A fission product is a fission fragment or a daughter isotope
produced by decay or neutron-induced reaction.
\item The number of heavy isotopes $N_{\mathrm{H}}=\mathcal{S}^{d}_{4}$
This number represents the combination of fissile isotopes and the other isotopes produced from
these isotopes by reactions other than fission.
\item The number of fission products $N_{\mathrm{fp}}=\mathcal{S}^{d}_{5}$
This number represents the combination of fission fragments and the other
daughter isotopes produced by any reaction (decay or neutron induced).
\item The number of other isotopes $N_{\mathrm{O}}=\mathcal{S}^{d}_{6}$
This number represents the other depleting isotopes which are not produced by fission or by reaction
with fission isotopes or fission products but have a depletion chain.
\item The number of stable isotopes $N_{\mathrm{H}}=\mathcal{S}^{d}_{7}$
This number represents the non-depleting isotopes producing energy (mainly
by radiative capture). An isotope is considered to be stable if:
\begin{itemize}
\item its radioactive decay constant is zero
\item the isotope has no father and no daughter
\item energy is produced by the isotope.
\end{itemize}
\item The maximum number of depleting reactions, including radioactive decay and
neutron-induced reactions $M_{\mathrm{R}}=\mathcal{S}^{d}_{8}$
\item The maximum number of parent isotopes leading to the production of an isotope in the
depletion chain $M_{\mathrm{S}}=\mathcal{S}^{d}_{9}$
\item The number of energy-dependent fission yield matrices $N_{\mathrm{ndp}}=\mathcal{S}^{d}_{10}$
\end{itemize}
\subsection{The depletion sub-directory \dir{depletion} in
\dir{microlib}}\label{sect:microlibdirdepletion}
The following records and sub-directories will be found on the first level of a
\dir{depletion} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in
\dir{depletion}}{6.0cm}
\label{tabl:tabchain}
\IntEnr
{STATE-VECTOR}{$40$}
{$\mathcal{S}^{d}_{i}$ is the vector describing the various parameters associated with this data structure,
as defined in \Sect{chainlibstate}.}
\CharEnr
{ISOTOPESDEPL}{$(N_{\mathrm{depl}})*12$}
{Reference name of the isotopes $\mathsf{NISOD}_{i}$ present in the depletion chain}
\IntEnr
{CHARGEWEIGHT}{$N_{\mathrm{depl}}$}
{6-digit (integer number) nuclide identifier with atomic number $Z$ (2
digits), mass number $A$ (3 digits) and energy state $E$ (0 for ground state, 1
for first excited level, etc.). This identifier is not defined for pseudo
fission products.}
\CharEnr
{DEPLETE-IDEN}{$(M_{\mathrm{R}})*8$}
{Reference name of the depletion reactions}
\IntEnr
{DEPLETE-REAC}{$M_{\mathrm{R}}\times N_{\mathrm{depl}}$}
{$K_{r,i}^{\rm d}$ is the list of identifier for the depletion of an isotope.}
\RealEnr
{DEPLETE-ENER}{$M_{\mathrm{R}}\times N_{\mathrm{depl}}$}{Mev}
{$R_{r,i}^{\rm d}$ is the energy produced by each depletion reaction $r$ of the father isotope. $r=1$ corresponds to radioactive decay}
\RealEnr
{DEPLETE-DECA}{$N_{\mathrm{depl}}$}{$10^{-8}$ s$^{-1}\ $}
{Radioactive decay constants.}
\IntEnr
{PRODUCE-REAC}{$M_{\mathrm{S}}\times N_{\mathrm{depl}}$}
{$K_{s,i}^{\rm p}$ is the list of identifier for the production of an isotope.}
\RealEnr
{PRODUCE-RATE}{$M_{\mathrm{S}}\times N_{\mathrm{depl}}$}{1}
{$R_{s,i}^{\rm p}$ is the branching ratio associated with each production reaction.}
\RealEnr
{FISSIONYIELD}{$N_{\mathrm{ndp}} \times N_{\mathrm{dfi}}\times N_{\mathrm{dfp}}$}{1}
{$Y_{k,{i\to j}}$ is the fission yield for each direct fissile isotope $i$ to each fission fragment $j$ in fission yield
macrogroup $k$.}
\OptRealEnr
{ENERGY-YIELD}{$N_{\mathrm{ndp}+1}$}{$N_\mathrm{ndp}\ge 2$}{eV}
{$E_{k}^{\rm fiss}$ are the energy limits of fission yield macrogroups.}
\end{DescriptionEnregistrement}
In all cases, the first component $R_{1,:}^{\rm d}$ contains the decay energy of the isotopes present in the burnup chain. The remaining components $r>1$ of the {\tt DEPLETE-ENER} record have different meaning, depending of the object containing the record:
\begin{description}
\item[{\tt RELEASE\_2003} draglib:] The {\tt DEPLETE-ENER} components with $r>1$ contains $Q_x$ values for the isotopes present in the burnup chain. It may include corrections for lumped isotopes not explicitely represented in the burnup chain.
\item[{\tt RELEASE\_2025} draglib:] The {\tt DEPLETE-ENER} components with $r>1$ contains only corrections for lumped isotopes not explicitely represented in the burnup chain.
\item[microlib:] The {\tt DEPLETE-ENER} components with $r>1$ are set to zero.
\end{description}
An isotope $\mathsf{NISO}_{i}$ defined in \Sect{microlibdirmain} is considered
to be part of the depletion chain only if one can find a value of $1 \le j \le N_{\rm depl}$
such that $\mathsf{NISO}_{i}= \mathsf{NISOD}_{j}$.
Some depleting isotopes may be automatically added to the \dir{microlib} directory.
In this case, the reference name in record {\tt ISOTOPERNAME} is taken equal
to its reference name in {\tt ISOTOPESDEPL} and the alias name in record
{\tt ISOTOPESUSED} is taken equal to the
first 8 characters of its reference name in {\tt ISOTOPESDEPL}, completed by a
4-digit mixture identifier. If the reference name contains an underscore, the
alias name is truncated at the first underscore. For example, an isotope
present in mixture 2 with a reference name equal to {\tt D2O\_3\_P5} is
translated into an alias name equal to {\tt D2O\blank{5}0002}.
\vskip 0.2cm
The contents of the variables $K_{r,i}^{\rm d}$ is used to identify the type of isotope under
consideration. For each isotope $i$, $r$ will take
successively the values $1$ to $M_{\mathrm{D}}$ depending on the type of
reaction $\mathsf{NREAD}_{r}$ one wishes to analyze, namely
\vskip 0.2cm
\begin{tabular}{|l|l|}
\hline
$\mathsf{NREAD}_{1}=${\tt DECAY\blank{3}} & isotope may undergo radioactive decay \\
$\mathsf{NREAD}_{2}=${\tt NFTOT\blank{3}} & isotope may undergo fission or is a
fission fragment \\
& $^{1}_{0}n + ^{A}_{Z}X \to \ ^{A+1-\nu-B}_{Z-Y}U + ^{B}_{Y}V + \nu \ ^{1}_{0}n + \gamma$ \\
$\mathsf{NREAD}_{3}=${\tt NG\blank{6}} & isotope may undergo neutron capture (mt$=$102) \\
& $^{1}_{0}n + ^{A}_{Z}X \to \ ^{A+1}_{Z}X + \gamma$ \\
$\mathsf{NREAD}_{4}=${\tt N2N\blank{5}} & isotope may undergo (n,2n) reaction (mt$=$16) \\
& $^{1}_{0}n + ^{A}_{Z}X \to \ ^{A-1}_{Z}X + 2 \ ^{1}_{0}n + \gamma$ \\
$\mathsf{NREAD}_{5}=${\tt N3N\blank{5}} & isotope may undergo (n,3n) reaction (mt$=$17) \\
$\mathsf{NREAD}_{6}=${\tt N4N\blank{5}} & isotope may undergo (n,4n) reaction (mt$=$37) \\
$\mathsf{NREAD}_{7}=${\tt NA\blank{6}} & isotope may undergo (n,$\alpha$) reaction (mt$=$107) \\
$\mathsf{NREAD}_{8}=${\tt NP\blank{6}} & isotope may undergo (n,p) reaction (mt$=$103) \\
$\mathsf{NREAD}_{9}=${\tt N2A\blank{5}} & isotope may undergo (n,2$\alpha$) reaction (mt$=$108) \\
$\mathsf{NREAD}_{10}=${\tt NNP\blank{5}} & isotope may undergo (n,np) reaction (mt$=$28) \\
$\mathsf{NREAD}_{11}=${\tt ND\blank{6}} & isotope may undergo (n,d) reaction (mt$=$104)\\
$\mathsf{NREAD}_{12}=${\tt NT\blank{6}} & isotope may undergo (n,t) reaction (mt$=$105) \\
\hline
\end{tabular}
\vskip 0.3cm
\noindent where symbols n, $\alpha$, p, d and t represent neutron, alpha particle, proton, deuteron
and triton, respectively.
\vskip 0.2cm
The contents of the variable $K_{r,i}^{\rm d}$ is used to specify the
properties of reaction $r$ for each isotope $i$ under consideration.
Here $K_{r,i}^{\rm d}$ contains two different types of informations, namely
$d(r)$ and $i(r)$ which are defined as follows:
\begin{equation}
d(r)=K_{r,i}^{\rm d} \bmod \ 100 \ \ \ \ {\rm and} \ \ \ \ i(r)={K_{r,i}^{\rm d} \over 100}
\end{equation}
\noindent where
\begin{displaymath}
d(r) = \left\{
\begin{array}{ll}
0 & \textrm{isotope $i$ does not deplete by reaction $\mathsf{NREAD}_{r}$} \\
1 & \textrm{isotope $i$ will deplete by reaction $\mathsf{NREAD}_{r}$} \\
2 & \textrm{isotope $i$ does not deplete by reaction $\mathsf{NREAD}_{r}$ but yields energy production} \\
3 & \textrm{isotope $i$ is fissile without fission yield. Valid only for $r$ such
that $\mathsf{NREAD}_{r}=${\tt NFTOT}} \\
4 & \textrm{isotope $i$ is fissile with fission yield. Valid only for $r$ such
that $\mathsf{NREAD}_{r}=${\tt NFTOT}} \\
5 & \textrm{isotope $i$ is a fission fragment. Valid only for $r$ such
that $\mathsf{NREAD}_{r}=${\tt NFTOT}}
\end{array} \right.
\end{displaymath}
\noindent and $i(r)=0$ unless $4\le d(r)\le 5$. When $d(r)=4$, $i(r)$ represents the fissile
isotope index while for $d(r)=5$, $i(r)$ represents the fission fragment index.
The fractional yield for the production of the fission fragment $i(r')$ from the
fissile isotope $i(r)$ is stored in matrix $Y_{i(r)\to i(r')}$.
The contents of the vector $R_{r,i}^{\rm d}$ is the energy in MeV emitted per
decay or reaction.
\vskip 0.2cm
The contents of the variables $K_{s,i}^{\rm p}$ is used to identify explicitly the parent isotope
which can generate the current isotope $i$. The maximum number of parent reaction for this
depletion chain is $M_{\mathrm{S}}$. $K_{s,i}^{\rm p}$ contains two different types of information,
namely $r(s)$ and $i(s)$ which are defined as follows:
\begin{equation}
r(s)=K_{s,i}^{\rm p}\bmod 100 \ \ \ \ {\rm and} \ \ \ \ i(s)={{K_{s,i}^{\rm p}}\over{100}}
\end{equation}
\noindent where $r(s)=0$ indicates that the list of parent isotopes is complete while $r(s)>0$
refers to the reaction type $\mathsf{NREAD}_{r(s)}$ and can take the following values:
\begin{displaymath}
r(s) = \left\{
\begin{array}{ll}
1 & \textrm{isotope $i$ produced by radioactive decay}\\
2 & \textrm{isotope $i$ produced by fission (this contribution is kept apart from record} \\
& \textrm{{\tt 'FISSIONYIELD'})} \\
3 & \textrm{isotope $i$ produced by neutron capture} \\
\ge 4 & \textrm{isotope $i$ produced by $\mathsf{NREAD}_{r(s)}$ reaction}
\end{array} \right.
\end{displaymath}
In the case where $r(s)>0$, $i(s)$ represents the isotope index associated
with the parent isotope and $R_{s,i}^{\rm p}$ represents the branching
ratio in fraction for the production of isotope $\mathsf{NISOD}_{i}$ from a neutron
reaction with the parent isotope $\mathsf{NISOD}_{i(s)}$.
\goodbreak
\subsection{State vector content for the {\sc shiba} self-shielding sub-directory}\label{sect:ssshibastate}
The dimensioning parameters for the self-shielding sub-directory, which are stored in the state vector
$\mathcal{S}^{s}$, represent:
\begin{itemize}
\item The first group for which self-shielding takes place $G_{\mathrm{min}}=\mathcal{S}^{s}_{1}$
By default $G_{\mathrm{min}}=N_{g,f}+1$
\item The last group for which self-shielding takes place $G_{\mathrm{max}}=\mathcal{S}^{s}_{2}$
By default $G_{\mathrm{max}}=N_{g,e}$
\item The maximum number of iterations in the self-shielding calculation $M_{r}=\mathcal{S}^{s}_{3}$
\item Enabling flag for the Livolant-Jeanpierre normalization $I_{\mathrm{lj}}=\mathcal{S}^{s}_{4}$
\item Enabling flag for the use of Goldstein-Cohen parameters $I_{\mathrm{gc}}=\mathcal{S}^{s}_{5}$
\item The transport correction option used in self-shielding $I_{\mathrm{tc}}=\mathcal{S}^{s}_{6}$
\begin{displaymath}
I_{\mathrm{tc}} = \left\{
\begin{array}{ll}
0 & \textrm{no transport correction applied in self-shielding calculation} \\
1 & \textrm{use transport corrected cross section in self-shielding calculation}
\end{array} \right.
\end{displaymath}
\item Type of self-shielding model $I_{\mathrm{level}}=\mathcal{S}^{s}_{7}$
\begin{displaymath}
I_{\mathrm{level}} = \left\{
\begin{array}{ll}
0 & \textrm{Stamm'ler model without distributed self-shielding effects} \\
1 & \textrm{Stamm'ler model with the Nordheim (PIC) distributed self-shielding model} \\
2 & \textrm{Stamm'ler model with both Nordheim (PIC) distributed self-shielding model} \\
& \textrm{and Riemann integration method.}
\end{array} \right.
\end{displaymath}
\item The option to indicate whether a specific flux solver or collision probability matrices
are used to perform the self-shielding calculation $I_{\mathrm{flux}}=\mathcal{S}^{s}_{8}$
(see \moc{PIJ} and \moc{ARM} keyword in \moc{SHI:} operator input option)
\begin{displaymath}
I_{\mathrm{flux}} = \left\{
\begin{array}{rl}
1 & \textrm{use a specific flux solver (the \moc{ARM} keyword was selected)} \\
2 & \textrm{use collision probability matrices (the \moc{PIJ} keyword was selected)}
\end{array} \right.
\end{displaymath}
\end{itemize}
\subsection{State vector content for the subgroup self-shielding sub-directory}\label{sect:sssubgroupstate}
The dimensioning parameters for the self-shielding sub-directory, which are stored in the state vector
$\mathcal{S}^{s}$, represent:
\begin{itemize}
\item The first group for which self-shielding takes place $G_{\mathrm{min}}=\mathcal{S}^{s}_{1}$
By default $G_{\mathrm{min}}=N_{g,f}+1$
\item The last group for which self-shielding takes place $G_{\mathrm{max}}=\mathcal{S}^{s}_{2}$
By default $G_{\mathrm{max}}=N_{g,e}$
\item SPH enabling flag $I_{\mathrm{sph}}=\mathcal{S}^{s}_{3}$
\begin{displaymath}
I_{\mathrm{sph}} = \left\{
\begin{array}{ll}
0 & \textrm{skip the multigroup equivalence procedure} \\
1 & \textrm{perform a multigroup equivalence procedure (SPH procedure or} \\
& \textrm{Livolant-Jeanpierre equivalence)}
\end{array} \right.
\end{displaymath}
\item The transport correction option used in self-shielding $I_{\mathrm{tc}}=\mathcal{S}^{s}_{4}$
\begin{displaymath}
I_{\mathrm{tc}} = \left\{
\begin{array}{ll}
0 & \textrm{no transport correction applied in self-shielding calculation} \\
1 & \textrm{use transport corrected cross section in self-shielding calculation}
\end{array} \right.
\end{displaymath}
\item The number of iterations in the self-shielding calculation $M_{r}=\mathcal{S}^{s}_{5}$
\item The option to indicate whether a specific flux solver or collision probability matrices
are used to perform the self-shielding calculation $I_{\mathrm{flux}}=\mathcal{S}^{s}_{6}$
(see \moc{PIJ} and \moc{ARM} keyword in \moc{USS:} operator input option)
\begin{displaymath}
I_{\mathrm{flux}} = \left\{
\begin{array}{rl}
1 & \textrm{use a specific flux solver (the \moc{ARM} keyword was selected)} \\
2 & \textrm{use collision probability matrices (the \moc{PIJ} keyword was selected)}
\end{array} \right.
\end{displaymath}
\item The $\gamma$ factor enabling flag $I_{\mathrm{\gamma}}=\mathcal{S}^{s}_{7}$. These factors
are used to represent the moderator absorption effect in the Sanchez--Coste self-shielding method.
\begin{displaymath}
I_{\mathrm{\gamma}} = \left\{
\begin{array}{ll}
0 & \textrm{the $\gamma$ factors are set to 1.0} \\
1 & \textrm{the $\gamma$ factors are computed}
\end{array} \right.
\end{displaymath}
\item The simplified self-shielding enabling flag $I_{\mathrm{calc}}=\mathcal{S}^{s}_{8}$
\begin{displaymath}
I_{\mathrm{calc}} = \left\{
\begin{array}{ll}
0 & \textrm{perform a delailed self-shielding calculation} \\
1 & \textrm{perform a simplified self-shielding calculation using data recovered from the} \\
& {\tt -DATA-CALC-} \textrm{ directory}
\end{array} \right.
\end{displaymath}
\item The flag for ignoring the activation of the mutual resonance shielding model $I_{\mathrm{noco}}=\mathcal{S}^{s}_{9}$
\begin{displaymath}
I_{\mathrm{noco}} = \left\{
\begin{array}{ll}
0 & \textrm{follow the directives set by {\tt LIB}} \\
1 & \textrm{ignore the directives set by {\tt LIB}}
\end{array} \right.
\end{displaymath}
\item Maximum number of fixed point iterations for the ST scattering source convergence $I_{\mathrm{max}}=\mathcal{S}^{s}_{10}$
\item Type of elastic slowing-down kernel in Autosecol $I_{\mathrm{ialt}}=\mathcal{S}^{s}_{11}$
\begin{displaymath}
I_{\mathrm{ialt}} = \left\{
\begin{array}{ll}
0 & \textrm{use exact elastic kernel} \\
1 & \textrm{use an approximate kernel for the resonant isotopes}
\end{array} \right.
\end{displaymath}
\item Maximum storage size for the slowing-down kernel values in Autosecol $I_{\mathrm{tra}}=\mathcal{S}^{s}_{12}$
\item Normalization flag for the collision probabilities $I_{\mathrm{norm}}=\mathcal{S}^{s}_{13}$
\begin{displaymath}
I_{\mathrm{norm}} = \left\{
\begin{array}{ll}
0 & \textrm{no normalization} \\
1 & \textrm{remove any remaining leakage from collision probabilities}
\end{array} \right.
\end{displaymath}
\item Seed integer used by the random number generator $I_{\mathrm{seed}}=\mathcal{S}^{s}_{14}$.
\end{itemize}
\clearpage
\subsection{The {\sc shiba} self-shielding sub-directory \dir{selfshield} in
\dir{microlib}}\label{sect:shibadirselfshield}
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{selfshield}}{7.5cm}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{s}_{i}$,
as defined in \Sect{ssshibastate}.}
\RealEnr
{EPS-SHIBA\blank{3}}{$1$}{1}
{Value of the relative convergence criterion for the self-shielding iterations in {\tt SHI:}. }
\end{DescriptionEnregistrement}
\subsection{The subgroup self-shielding sub-directory \dir{uss-selfshield} in
\dir{microlib}}\label{sect:subgroupdirselfshield}
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{uss-selfshield}}{7.5cm}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{s}_{i}$,
as defined in \Sect{sssubgroupstate}.}
\OptDirEnr
{-DATA-CALC-\blank{1}}{$I_{\mathrm{calc}} = 1$}
{Name of directory containing the data required by a simplified self-shielding
calculation. This type of calculation allows the definition of a single
self-shielded isotope in several resonant mixtures.}
\DirVar
{\listedir{isodir}}
{List of sub-directories that contain isotopic subgroup information collected by the {\tt USS:} module.}
\end{DescriptionEnregistrement}
The list of directory \listedir{isodir} named $\mathsf{ISODIR}$ will be composed according to
\begin{quote}
\verb|WRITE(|$\mathsf{ISODIR}$,\verb|'(1HC,I5,1H/,I5)')| $iso$,$nbiso$
\end{quote}
\noindent where $iso$ is the isotope index and $nbiso$ is the total number of isotopes. \listedir{isodir} is defined in Table~\ref{table:isodir}.
\begin{DescriptionEnregistrement}{Main records and sub-directories in \listedir{isodir}}{7.5cm}\label{table:isodir}
\DirVar
{\listedir{cordir}}
{List of sub-directories that contain correlated isotopic subgroup information collected by the {\tt USS:} module.}
\end{DescriptionEnregistrement}
The list of directory \listedir{cordir} named $\mathsf{CORDIR}$ will be composed according to
\begin{quote}
\verb|WRITE(|$\mathsf{CORDIR}$,\verb|'(3HCOR,I4,1H/,I4)')| $ires$,$nires$
\end{quote}
\noindent where $ires$ is the correlated isotope index and $nires$ is the total number of correlated isotopes. \listedir{cordir} is defined
in Table~\ref{table:cordir}.
\begin{DescriptionEnregistrement}{Main records and sub-directories in \listedir{cordir}}{7.5cm}\label{table:cordir}
\DirlEnr
{NWT0-PT\blank{5}}{$G$}
{List of real arrays. Each component of this list contains subgroup flux information in correlated fuel regions, as computed by {\tt USS:}.
Each real array has dimension $N_{\rm nbnrs}\times K_g$, where $N_{\rm nbnrs}$ is the number of correlated fuel regions and $K_g$ is the
number of base points in energy group $g$.}
\OptDirlEnr
{ASSEMB-PHYS\blank{1}}{$N_{\rm asm}$}{$I_{\mathrm{calc}} = 1$}
{List of {\sc assemb-phys} directories. Each component of this list contains subgroup assembly information for the subgroup method with
physical probability tables. The specification of this directory is given in Sect.~\ref{sect:asminfodhdirgroup} or~\ref{sect:asminfodirgroup}
depending if a double-heterogeneity is present or not. A double-heterogeneity is present if $\mathcal{S}^{t}_{40}=1$
in the {\sc tracking} object.}
\OptDirlEnr
{ASSEMB-RIBON}{$N_{\rm asm}$}{$I_{\mathrm{calc}} = 3,4$}
{List of {\sc assemb-ribon} directories. Each component of this list contains subgroup assembly information for the subgroup projection
or Ribon extended method. The specification of this directory is given in Sect.~\ref{sect:asminfodhdirgroup} or~\ref{sect:asminfodirgroup}
depending if a double-heterogeneity is present or not. A double-heterogeneity is present if $\mathcal{S}^{t}_{40}=1$
in the {\sc tracking} object.}
\OptDirlEnr
{ASSEMB-RSE\blank{2}}{$N_{\rm asm}$}{$I_{\mathrm{calc}} = 6$}
{List of {\sc assemb-rse} directories. Each component of this list contains subgroup assembly information for the resonance spectrum
expansion method. The specification of this directory is given in Sect.~\ref{sect:asminfodhdirgroup} or~\ref{sect:asminfodirgroup}
depending if a double-heterogeneity is present or not. A double-heterogeneity is present if $\mathcal{S}^{t}_{40}=1$
in the {\sc tracking} object.}
\end{DescriptionEnregistrement}
\goodbreak
\subsection{Contents of an \dir{isotope} directory}\label{sect:isotopedir}
Each isotope directory always contains a cross section identifier record {\tt SCAT-SAVED\blank{2}}
which must be used to verify if a given cross section type has
been saved for this isotope.
\begin{DescriptionEnregistrement}{Isotopic cross section identifier records}{7.5cm}
\label{tabl:tabiso1}
\OptCharEnr
{ALIAS\blank{7}}{$*12$}{$\mathcal{M} \ge 0$}
{Alias character*12 name of a microlib isotope. This record is not provided in {\sc draglib} objects.}
\IntEnr
{SCAT-SAVED\blank{2}}{$L$}
{Vector $\kappa^{\rm scat}_{k}$ to identify the various type of
Legendre-dependent cross sections saved for this isotope}
\RealEnr
{AWR\blank{9}}{$1$}{nau}
{Ratio of the isotope mass divided by the neutron mass}
\OptDirEnr
{PT-TABLE\blank{4}}{$I_{\rm proc}\ge 1$}
{Sub-directory containing probability table information, following the specification given in \Sect{pt-table}.
$I_{\rm proc}$ is defined in \Sect{microlibdir}. This sub-directory is present in the microlib builded by the {\tt LIB:} module.}
\end{DescriptionEnregistrement}
Delayed neutron data can be present for some fissile isotopes on the \dir{isotope} directory. If $N_{\rm
del}\ge 1$ precursor groups are used, the following information is available:
\begin{DescriptionEnregistrement}{Delayed neutron reaction
records}{7.5cm}
\label{tabl:tabiso2}
\OptRealVar
{\{nusid\}}{$G$}{$N_{del}\ge 1$}{b}
{$\nu\sigma_{{\rm f},\ell}^{{\rm D},g}$: The product of $\sigma_{\rm f}^{g}$, the fission cross section with
$\nu_{\ell}^{{\rm D},g}$, the averaged number of fission--emitted delayed
neutron produced in the precursor group $\ell$.}
\OptRealVar
{\{chid\}}{$G$}{$N_{del}\ge 1$}{1}
{$\chi^{{\rm D},g}_\ell$: Delayed fission spectrum, normalized to one, for the delayed fission
neutrons in precursor group $\ell$.}
\OptRealEnr
{LAMBDA-D\blank{4}}{$N_{\rm del}$}{$N_{\rm del}\ge 1$}{s$^{-1}$}
{$\lambda^{\rm D}_\ell$: Decay constant associated with the precursor group $\ell$. We must have
$0 <\lambda^{\rm D}_\ell<\lambda^{\rm D}_{\ell+1}$.}
\end{DescriptionEnregistrement}
The delayed component of the fission yields in each precursor group $\ell$ is given as
$\nu_\ell^{{\rm D},g}$. The quantities $\pi^{{\rm D},g}$ and $\nu_\ell^{{\rm D},g} \ \sigma_{\rm f}^g$ are defined as
$$\pi^{{\rm D},g}={\nu^{{\rm D},g} \ \sigma_{\rm f}^g \over
\left( \nu^g \sigma_{\rm f}^g \right)^{\rm ss}} \ \ .$$
\noindent and
$$\nu_\ell^{{\rm D},g} \ \sigma_{\rm f}^g=\omega_\ell \ \pi^{{\rm D},g} \
\left( \nu^g \sigma_{\rm f}^g \right)^{\rm ss}$$
\noindent where the superscript ${\rm ss}$ indicates steady-state values. The
delayed neutron records {\sl \{nusid\}} and {\sl \{chid\}} will be
composed, using the following FORTRAN instructions, as $\mathsf{NUSIGD}$ and $\mathsf{CHID}$:
\begin{displaymath}
\mathtt{WRITE(}\mathsf{NUSIGD}\mathtt{,'(A6,I2.2)')} \ \mathtt{'NUSIGF'},ell
\end{displaymath}
\begin{displaymath}
\mathtt{WRITE(}\mathsf{CHID}\mathtt{,'(A3,I2.2)')} \ \mathtt{'CHI'},ell
\end{displaymath}
for $1\leq ell \leq N_{\rm del}$. For example, in the case where two group cross sections are considered
($N_{\rm del}=2$), the following records would be generated:
\begin{DescriptionEnregistrement}{Example of delayed--neutron records in
\dir{isotope}}{8.0cm}
\OptRealEnr
{NUSIGF01\blank{4}}{$G$}{$N_{\rm del}\ge 1$}{b}
{$\nu\sigma_{{\rm f},1}^{{\rm D},g}$: The product of $\sigma_{\rm f}^{g}$, the fission cross section with
$\nu_1^{{\rm D},g}$, the averaged number of fission--emitted delayed
neutron produced in the precursor group 1.}
\OptRealEnr
{NUSIGF02\blank{4}}{$G$}{$N_{\rm del}\ge 2$}{b}
{$\nu\sigma_{{\rm f},2}^{{\rm D},g}$: The product of $\sigma_{\rm f}^{g}$, the fission cross section with
$\nu_2^{{\rm D},g}$, the averaged number of fission--emitted delayed
neutron produced in the precursor group 2.}
\OptRealEnr
{CHI01\blank{7}}{$G$}{$N_{\rm del}\ge 1$}{1}
{$\chi^{{\rm D},g}_1$: Delayed fission spectrum,
normalized to one, for the delayed fission neutrons in
precursor group 1.}
\OptRealEnr
{CHI02\blank{7}}{$G$}{$N_{\rm del}\ge 2$}{1}
{$\chi^{{\rm D},g}_2$: Delayed fission spectrum,
normalized to one, for the delayed fission neutrons in
precursor group 2.}
\end{DescriptionEnregistrement}
\vskip 0.2cm
In cases where the /isotope/ directory is produced by the edition module, some
depletion-related information may be available in this directory, in order to facilitate
subsequent data processing. This information is described in
Table~\ref{tabl:tabiso3}.
\begin{DescriptionEnregistrement}{Depletion-related information}{7.5cm}
\label{tabl:tabiso3}
\OptRealEnr
{MEVF\blank{8}}{$1$}{$N_d \ge 1$}{MeV}
{Energy in MeV produced by fission.}
\OptRealEnr
{DECAY\blank{7}}{$1$}{$N_d \ge 1$}{10$^{-8}$ s$^{-1}$}
{Radioactive decay constant}
\OptRealEnr
{YIELD\blank{7}}{$G+1$}{$N_d \ge 1$}{1}
{Fission fragment yield per energy group. The first value is the average yield
over all the energy spectrum. This record is given only for fission fragments.}
\OptIntEnr
{PIFI\blank{8}}{$N_{\rm dfi}$}{$N_{\rm dfi} \ge 1$}
{Position in {\tt ISOTOPESUSED} of the mother fissile isotopes. This record is
given only for fission fragments.}
\OptRealEnr
{PYIELD\blank{6}}{$N_{\rm dfi}$}{$N_{\rm dfi} \ge 1$}{1}
{Fission product yield per fissile isotope. This record is given only for
fission fragments.}
\end{DescriptionEnregistrement}
\vskip 0.2cm
We will first consider the more usual case where constant vector reactions are
stored on the isotopic directory. A typical example of the microscopic cross
section directory may be:
\begin{DescriptionEnregistrement}{Example of isotopic vector reaction records}{7.0cm}
\label{tabl:tabiso4}
\RealEnr
{NTOT0\blank{7}}{$G$}{b}
{The $\phi$--weighted multigroup total cross section $\sigma_0^{g}$}
\RealEnr
{TRANC\blank{7}}{$G$}{b}
{The multigroup transport correction $\sigma_{tc}^{g}$}
\RealEnr
{NUSIGF\blank{6}}{$G$}{b}
{The product of $\sigma_{f}^{g}$, the multigroup fission cross section with
$\nu^{g}$, the steady-state number of neutron produced per fission,
$\nu\sigma_{f}^{{\rm ss},g}$}
\RealEnr
{NFTOT\blank{7}}{$G$}{b}
{The multigroup fission cross section $\sigma_{f}^{g}$}
\OptRealEnr
{CHI\blank{9}}{$G$}{$G_{\rm chi}=0$}{}
{The multigroup energy spectrum of the neutron emitted by fission $\chi^{g}$}
\OptRealEnr
{CHI--01\blank{5}}{$G$}{$G_{\rm chi}\ge 1$}{}
{The first energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g,1}$}
\OptRealEnr
{CHI--02\blank{5}}{$G$}{$G_{\rm chi}\ge 2$}{}
{The second energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g,2}$}
\OptRealEnr
{CHI--03\blank{5}}{$G$}{$G_{\rm chi}\ge 3$}{}
{The third energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g,3}$}
\OptRealEnr
{CHI--04\blank{5}}{$G$}{$G_{\rm chi}\ge 4$}{}
{The fourth energy-dependent multigroup energy spectrum of the neutron emitted by fission $\chi^{g,4}$}
\RealEnr
{NG\blank{10}}{$G$}{b}
{The multigroup neutron capture cross section $\sigma_{c}^{g}$}
\RealEnr
{H-FACTOR\blank{4}}{$G$}{eV b}
{Energy production coefficients $H^{g}$ (product of each microscopic cross section
times the energy emitted by this reaction).}
\OptRealEnr
{C-FACTOR\blank{4}}{$G$}{*}{electron b}
{Charge deposition coefficients $C^{g}$ (product of each microscopic cross section
times the charge deposed by this reaction). Information provided if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.}
\RealEnr
{N2N\blank{9}}{$G$}{b}
{The multigroup cross section
$\sigma_{(n,2n)}^{g}$ for the reaction
$^{A}_{Z}X+n \to ^{A-1}_{Z}X+2n$}
\RealEnr
{N3N\blank{9}}{$G$}{b}
{The multigroup cross section
$\sigma_{(n,3n)}^{g}$ for the reaction
$^{A}_{Z}X+n \to ^{A-2}_{Z}X+3n$}
\RealEnr
{N4N\blank{9}}{$G$}{b}
{The multigroup cross section
$\sigma_{(n,4n)}^{g}$ for the reaction
$^{A}_{Z}X+n \to ^{A-3}_{Z}X+4n$}
\RealEnr
{NP\blank{10}}{$G$}{b}
{The multigroup cross section
$\sigma_{(n,p)}^{g}$ for the reaction
$^{A}_{Z}X+n \to ^{A}_{Z-1}X+p$}
\RealEnr
{NA\blank{10}}{$G$}{b}
{The multigroup cross section
$\sigma_{(n,\alpha)}^{g}$ for the reaction
$^{A}_{Z}X+n \to ^{A-3}_{Z-2}X+\alpha$ }
\RealEnr
{NGOLD\blank{7}}{$G$}{}
{The multigroup Goldstein-Cohen parameters as recovered from {\tt GIR} array in main \dir{microlib} directory
$\lambda^{g}$}
\RealEnr
{NWT0\blank{8}}{$G$}{s$^{-1}$cm$^{-2}$}
{The multigroup neutron flux spectrum $\phi_{w}^{g}$}
\RealEnr
{STRD\blank{8}}{$G$}{b}
{The multigroup transport cross section
homogenized over all directions
$\sigma_{\rm strd}^{g}$}
\RealEnr
{STRD-X\blank{6}}{$G$}{b}
{The $x-$directed multigroup transport cross
section $\sigma_{{\rm strd},x}^{g}$}
\RealEnr
{STRD-Y\blank{6}}{$G$}{b}
{The $y-$directed multigroup transport cross
section $\sigma_{{\rm strd},y}^{g}$}
\RealEnr
{STRD-Z\blank{6}}{$G$}{b}
{The $z-$directed multigroup transport cross
section $\sigma_{{\rm strd},z}^{g}$}
\RealEnr
{OVERV\blank{7}}{$G$}{cm$^{-1}$s}
{The average of the inverse neutron velocity \hbox{$<1/v>_{m}^g$}}
\RealEnr
{NTOT1\blank{7}}{$G$}{b}
{The ${\cal J}$--weighted multigroup total cross section $\sigma_1^{g}$}
\RealEnr
{NWT1\blank{8}}{$G$}{s$^{-1}$cm$^{-2}$}
{The multigroup fundamental current spectrum ${\cal J}_{w}^{g}$}
\RealEnr
{NWAT0\blank{7}}{$G$}{1}
{The multigroup neutron adjoint flux spectrum $\phi_{w}^{*g}$}
\RealEnr
{NWAT1\blank{7}}{$G$}{1}
{The multigroup fundamental adjoint current spectrum ${\cal J}_{w}^{*g}$}
\end{DescriptionEnregistrement}
\vskip 0.2cm
The {\tt H-FACTOR} record has different meaning, depending of the object containing it:
\begin{description}
\item[{\tt RELEASE\_2003} draglib:] No {\tt H-FACTOR} record.
\item[{\tt RELEASE\_2025} draglib:] The {\tt H-FACTOR} record contains $\sum_x Q_x \sigma_x$ or kerma values directly computed by NJOY for this specific isotope.
\item[microlib:] The {\tt H-FACTOR} record contains $\sum_x Q_x \sigma_x$ or kerma values for this specific isotope. It may include corrections for lumped isotopes not explicitely represented in the associated burnup chain.
\end{description}
This isotopic directory can also be used to store time dependent cross sections in the form of a power series expansion:
\begin{equation}
v_{k}^{g}(t)=\sum_{i=0}^{I} v_{k,i}^{g} t^{i}
\label{eq:TimeSerie}
\end{equation}
where the presence of these various terms is specified using $\kappa_{k}$.
Note that the last three characters of each of the records in Table~\ref{tabl:tabiso4} correspond to the extension $\mathsf{EXT}$=\verb*|' '| that is
associated with term $i=0$ in the power series expansion for the cross sections (see
\Eq{TimeSerie}). For $i=1, 2$, the extension takes successively the value $\mathsf{EXT}$=\verb*|'LIN'| and $\mathsf{EXT}$=\verb*|'QUA'|.
For example, if one considers the total cross section and assumes that $F_{i}(\kappa_{1})=1$ for $i=0,2$, then this implies the presence
of the following additional records in the \dir{isotope}:
\begin{DescriptionEnregistrement}{Additional total cross section records for $I=2$}{6.0cm}
\RealEnr
{TOTAL\blank{4}LIN}{$G$}{d$^{-1}$b}
{array $v_{1,1}^{g}=\Delta\sigma^{g}$ containing the first order coefficients in the power series expansion for the multigroup total
cross section}
\RealEnr
{TOTAL\blank{4}QUA}{$G$}{d$^{-2}$b}
{array $v_{1,2}^{g}=\Delta^{2}\sigma^{g}$ containing the second order coefficients in the power series expansion for the multigroup
total cross section}
\end{DescriptionEnregistrement}
\vskip 0.2cm
The multigroup scattering cross section matrix, which gives the probability for a
neutron in group $h$ to appear in group $g$ after a collision with this isotope
is represented by the form:
\begin{displaymath}
\sigma_{s}^{h\to g}(\vec{\Omega}\to\vec{\Omega}')
=\sum_{\ell=0}^{L}{{2\ell+1}\over{4\pi}} P_{\ell}(\vec{\Omega}\cdot\vec{\Omega}')
\sigma_{\ell}^{h\to g}
=\sum_{\ell=0}^{L}\sum_{m=-\ell}^{\ell}
Y_{\ell}^{m}(\vec{\Omega})Y_{\ell}^{m}(\vec{\Omega}')\sigma_{\ell}^{h\to g}
\end{displaymath}
using a spherical harmonic series expansion to order $L-1$. Assuming these
spherical harmonic are orthonormalized, namely:
\begin{displaymath}
\int_{4\pi} d^{2}\Omega \ Y_{\ell}^{m}(\vec{\Omega}) Y_{l'}^{m'}(\vec{\Omega})=
\delta_{m,m'}\delta_{\ell,\ell'}
\end{displaymath}
we can define $\sigma_{\ell}^{h\to g}$ in terms of $\sigma_{s}^{h\to
g}(\vec{\Omega}\to\vec{\Omega}')$ using the following integral:
\begin{displaymath}
\sigma_{\ell}^{h\to g}
=\int_{4\pi}d^{2}\Omega \ \sigma_{s}^{h\to g}(\vec{\Omega}\to\vec{\Omega}')
P_{\ell}(\vec{\Omega}\cdot\vec{\Omega}')
\end{displaymath}
Note that this definition of $\sigma_{\ell}^{h\to g}$ is not unique and some authors
include the factor $2l+1$ directly in different angular moments of the
scattering cross section.
\vskip 0.2cm
Here instead of storing on these $G\times G$
matrices $\sigma_{\ell}^{h\to g}$, a vector which contains a compress form for this
matrix will be considered. This choice is justified by the fact that the number
of energy groups which will lead to scattering in a specific group is generally
relatively small compared to the total number of groups in the library and that
these groups are clustered around the final energy group.
Here we will first define two different integer vectors $n_{\ell}^{g}$ and
$h_{\ell}^{g}$ for each order in the scattering cross section and for each final
energy group $g$ which will contain respectively the number of
successive initial energy groups for which the scattering cross section does
not vanish and the maximum energy group number for which scattering to the
final group $g$ does not vanishes. Accordingly, for a scattering cross section
of the form:
\begin{center}
\begin{tabular}{c||cccc}
$\sigma_{0}^{h\to g}$ &$g=1$ & $g=2$ & $g=3$ & $g=4$ \\ \hline\hline
$h=1$ & $a_{1}$ & $a_{2}$ & 0 & 0 \\
$h=2$ & 0 & $a_{3}$ & $a_{4}$ & $a_{5}$ \\
$h=3$ & 0 & $a_{6}$ & $a_{7}$ & 0 \\
$h=4$ & 0 & $a_{8}$ & 0 & $a_{9}$ \\ \hline\hline
$h_{0}^{g}$ & 1 & 4 & 3 & 4 \\
$n_{0}^{g}$ & 1 & 4 & 2 & 3 \\
\end{tabular}
\end{center}
The compress scattering matrix will then contain the following information:
\begin{displaymath}
\sigma_{\ell,c}=\left(\sigma_{\ell}^{h^{1}\to 1},\sigma_{\ell}^{h^{1}-1\to 1},
\ldots,\sigma_{\ell}^{h^{1}-n_{1}+1\to 1},\sigma_{\ell}^{h^{2}\to
2},\ldots,\sigma_{\ell}^{h^{G}-n_{G}+1\to G}\right)
\end{displaymath}
which for the example above leads to
\begin{displaymath}
\sigma_{\ell,c}=\left(a_{1},a_{8},a_{6},
a_{3},a_{2},a_{7},a_{4},a_{9},0,a_{5}\right)
\end{displaymath}
As a result $\sigma_{\ell}^{h\to g}$ can be
reconstructed using
\begin{displaymath}
\sigma_{\ell}^{h\to g} = \left\{
\begin{array}{lll}
0 & \textrm{if} & h > h_{\ell}^{g}\\
0 & \textrm{if} & h < h_{\ell}^{g}-n_{\ell}^{g}+1\\
\sigma_{\ell,c}^{k} & \textrm{otherwise} & k=\sum_{h=1}^{g-1} n_{\ell}^{h} +
h_{\ell}^{g}-h+1
\end{array} \right.
\end{displaymath}
Finally, we will also save the total scattering cross section vector of order
$\ell$ which is defined as
\begin{displaymath}
\sigma_{\ell,s}^{h}=\sum_{g=1}^{G} \sigma_{\ell}^{h\to g}
\end{displaymath}
In the case where only the order $\ell=0$ moment of scattering cross section is non
vanishing (isotropic scattering) the following records can be found on the
isotopic directory.
\begin{DescriptionEnregistrement}{Optional scattering records}{7.0cm}
\label{tabl:tabiso5}
\RealEnr
{SIGS00\blank{6}}{$G$}{b}
{The isotropic component ($\ell=0$) of the multigroup total scattering cross
section
$\sigma_{0,s}^{g}$}
\IntEnr
{IJJS00\blank{6}}{$G$}
{Highest energy group number for which
the isotropic component of the scattering cross section to group $g$ does not
vanish, $h_{0}^{g}$}
\IntEnr
{NJJS00\blank{6}}{$G$}
{Number of energy groups for which
the isotropic component of the scattering cross section to group $g$ does not
vanish, $n_{0}^{g}$}
\RealEnr
{SCAT00\blank{6}}{$\sum_{g=1}^{G} n_{0}^{g}$}{b}
{Compressed isotropic component of the scattering matrix
$\sigma_{0,c}^{k}$}
\OptDirVar
{\listedir{subiso}}{$I_{\rm part}\ge 1$}
{Set of sub-directories containing scattering information towards a companion particle. \listedir{subiso}
is the name of the companion particle (set to {\tt N}, {\tt G}, {\tt B}, {\tt C} or {\tt P}). This information
is used to construct coupled sets of cross sections.}
\end{DescriptionEnregistrement}
If the scattering cross section is
expanded to order $L>1$ in Legendre polynomials, additional set of scattering
records similar to those described above will be presentin the cross section directory.
The first four characters and last 6 characters in the names of
these records will again be identical to those described above while character 5
and 6 will differ from level to level. For example, the order
$\ell=5$ compressed scattering matrix will be identified by
\texttt{SCAT05\blank{6}} while for order
$\ell=50$ we will use \texttt{SCAT50\blank{6}}.
\vskip 0.2cm
The {\tt STRD} cross sections are normalized in such a way to permit the
calculation of a diffusion coefficient using the following formula:
\begin{equation}
D^g={\displaystyle 1\over\displaystyle 3 \ \sum_i N_i \ \sigma_{{\rm strd},i}^g}
\end{equation}
\noindent where $N_i$ is the isotopic density of isotope $i$ and $\sigma_{{\rm strd},i}^g$
is the {\tt STRD} cross section of isotope $i$ in energy group $g$. The sum is
performed over {\sl all} isotopes present in the mixture. The {\tt STRD} cross
sections for isotope $i$ are defined as
\begin{eqnarray}
\sigma_{{\rm strd},i}^g&=&{1\over (\mu^g)^2} \ {\left<\phi \right>_g \over 3
\left<(\Sigma_1-\Sigma_{\rm s1}){\cal J}\right>_g} \ (\sigma_{1,i}^g-\sigma_{{\rm
s1},i}^g) \ \
\ {\rm if \ a \ streaming \ model \ is \ used} \\
&=&{1\over (\mu^g)^2} \ {\left<\phi \right>_g^2 \over 3 \left< D \phi \right>_g
\left<(\Sigma_0-\Sigma_{\rm s1})\phi\right>_g} \ (\sigma_{0,i}^g-\sigma_{{\rm
s1},i}^g) \ \
\ {\rm if \ no \ streaming \ model \ used}
\end{eqnarray}
\noindent where
\begin{description}
\item [$\phi^g$] fundamental flux
\item [${\cal J}^g$] fundamental current
\item [$\mu^g$] SPH equivalence factor
\item [$\Sigma_0^g$] $\phi$--weighted macroscopic total cross section of the
mixture
\item [$\Sigma_1^g$] ${\cal J}$--weighted macroscopic total cross section of the
mixture
\item [$\Sigma_{\rm s1}^g$] macroscopic $P_1$ scattering cross section of the
mixture (${\cal J}$--weighted
if a streaming model is used; $\phi$--weighted if no streaming model used)
\item [$D^g$] diffusion coefficient
\item [$\sigma_{0,i}^g$] $\phi$--weighted microscopic total cross section for
isotope $i$
\item [$\sigma_{1,i}^g$] ${\cal J}$--weighted microscopic total cross section for
isotope $i$
\item [$\sigma_{{\rm s1}.i}^g$] microscopic $P_1$ scattering cross section for
isotope $i$ (${\cal J}$--weighted
if a streaming model is used; $\phi$--weighted if no streaming model used)
\end{description}
\vskip 0.2cm
On the other hand the so-called directional cross
section {\tt STRD\blank{1}X}, {\tt STRD\blank{1}Y}
and {\tt STRD\blank{1}Z} are obtained in such a way that
\begin{equation}
D_k^g={\displaystyle 1\over\displaystyle 3 \ \sum_i N_i \ \sigma_{{\rm strd},k,i}^g}
\ ; \ \ \ k=x,\ y \ {\rm or} \ z \ \ \ .
\end{equation}
\vskip 0.2cm
For example, for an isotope with only total and scattering cross sections, we will find the
following records on the cross section directory.
\begin{DescriptionEnregistrement}{Example of cross section records}{7.5cm}
\RealEnr
{NTOT0\blank{7}}{$G$}{b}
{The multigroup total cross section $\sigma^{g}$}
\RealEnr
{SIGS00\blank{6}}{$G$}{b}
{The isotropic component ($\ell=1$)of the multigroup total scattering cross
section
$\sigma_{0,s}^{g}$}
\IntEnr
{IJJS00\blank{6}}{$G$}
{Highest energy group number for which
the isotropic component of the scattering cross section to group $g$ does not
vanishes, $h_{0}^{g}$}
\IntEnr
{IJJS00\blank{3}}{$G$}
{Highest energy group number for which the first order perturbation in
the isotropic component of the scattering cross section to group $g$ does not
vanishes, $h_{0,1}^{g}$}
\IntEnr
{NJJS00\blank{6}}{$G$}
{Number of energy groups for which
the isotropic component of the scattering cross section to group $g$ does not
vanishes, $n_{0}^{g}$}
\RealEnr
{SCAT00\blank{6}}{$\sum_{g=1}^{G} n_{0}^{g}$}{b}
{Compressed isotropic component of the scattering matrix
$\sigma_{0,c}^{k}$}
\RealEnr
{SIGS01\blank{6}}{$G$}{b}
{The linearly anisotropic component ($\ell=1$)
of the multigroup total scattering cross section
$\sigma_{1,s}^{g}$}
\IntEnr
{IJJS01\blank{6}}{$G$}
{Highest energy group number for which
the linearly anisotropic component of the scattering cross section
to group $g$ does not vanishes,
$h_{1}^{g}$}
\IntEnr
{NJJS01\blank{6}}{$G$}
{Number of energy groups for which
the linearly anisotropic component of the scattering cross section
to group $g$ does not vanishes,
$n_{1}^{g}$}
\RealEnr
{SCAT01\blank{6}}{$\sum_{g=1}^{G} n_{1}^{g}$}{b}
{Compressed linearly anisotropic component of the scattering matrix
$\sigma_{1,c}^{k}$}
\end{DescriptionEnregistrement}
Note that most of these cross sections are not required to perform a cell
calculation. In fact, in a typical transport calculation, only
$\sigma^{g}$, $\sigma_{tc}^{g}$, $\nu\sigma_{f}^{g}$, $\chi^{g}$ and the
isotropic and linearly anisotropic scattering matrix are
used. For burnup calculations, depending on the depletion chain prescribed,
the following cross sections may be required:
$\sigma_{f}^{g}$, $\sigma_{c}^{g}$, $\sigma_{(n,2n)}^{g}$, $\sigma_{(n,3n)}^{g}$,
$\sigma_{(n,4n)}^{g}$, $\sigma_{(n,p)}^{g}$, $\sigma_{(n,\alpha)}^{g}$.
Finally, when editing isotopic cross sections, all the cross sections types in
the library will be processed.
\vskip 0.15cm
A final note on the use of the transport correction and the homogenized and
directional transport cross section. In DARGON, the transport correction cross
section is used to correct the total and isotropic scattering cross
section using the relations
\begin{eqnarray*}
\sigma_{c}^{g} &=& \sigma^{g} -\sigma_{tc}^{g}\\
\sigma_{c,0}^{g\to g}&=& \sigma_{0}^{g\to g}-\sigma_{tc}^{g}
\end{eqnarray*}
\goodbreak
\subsubsection{The probability table directory {\tt PT-TABLE} in \dir{isotope}}\label{sect:pt-table}
Physical probability tables ($I_{\rm proc}=1$) are obtained from a least-square fit of the
self-shielded cross sections against dilution. Mathematical probability tables ($I_{\rm proc}\ge 3$) are obtained from
Autolib data using the CALENDF formalism.
Resonance spectrum expansion (RSE) information ($I_{\rm proc}=6$) is obtained from Autolib data using a singular value decomposition (SVD) of the
form $\shadowA=\shadowU \shadowW \shadowV^\top$ where
\begin{description}
\item[$\shadowA$:] snapshot flux matrix of size $N_{{\rm ufg},g}\times N_{\rm dil}$ recovered from the Draglib or Apollo2 file,
\item[$\shadowU$:] first orthogonal SVD matrix of size $N_{{\rm ufg},g}\times K_g$,
\item[$\shadowW$:] singular-value diagonal matrix of size $K_g\times K_g$,
\item[$\shadowV$:] second orthogonal SVD matrix of size $N_{\rm dil}\times K_g$
\end{description}
\noindent where $N_{{\rm ufg},g}$ is the number of ultra-fine groups in coarse group $g$, $N_{\rm dil}$ is the number of snapshot ultra-fine group
flux distributions in coarse group $g$ (corresponding to the number of dilutions) and $K_g$ is the SVD rank in coarse group $g$.
\begin{DescriptionEnregistrement}{Probability tables or RSE tables in \dir{isotope}}{7.5cm}
\OptDirlEnr
{GROUP-PT\blank{4}}{$G$}{$I_{\rm proc}\ne 6$}
{List of energy-group sub-directories. Each component of the list is a directory containing
the probability-table information associated with a specific group. See table~\ref{table:pt}.}
\OptDirlEnr
{GROUP-RSE\blank{3}}{$G$}{$I_{\rm proc}= 6$}
{List of energy-group sub-directories. Each component of the list is a directory containing
the resonance spectrum expansion information associated with a specific coarse group. See table~\ref{table:rse}.}
\OptDirVar
{\listedir{isotope2}}{$I_{\rm proc}= 6$}
{Set of sub-directories containing subgroup projection for {\sl isotope2} cross section information with
respect of {\sl isotope} base points for the RSE method. Subgroup projection of scattering cross sections is present for all
resonant isotopes, even for {\sl isotope2} $\equiv$ {\sl isotope}. Subgroup projection of total cross sections is
present only for {\sl isotope2} $\neq$ {\sl isotope}. See table~\ref{table:spmrse}.}
\IntEnr
{NOR\blank{9}}{$G$}
{Order $K_g$ of the probability table or of the resonance spectrum expansion tables in each energy group $g$.
If $I_{\rm proc}= 6$, the RSE rank $K_g \le N_{\rm dil}$ where $N_{\rm dil}$ is the number of dilutions.}
\IntEnr
{NDEL\blank{8}}{$1$}
{Number of delayed neutron precursor groups for this resonant isotope.}
\OptRealEnr
{SVD-EPS\blank{5}}{$1$}{$I_{\rm proc}= 6$}{~}
{Rank accuracy of the SVD.}
\end{DescriptionEnregistrement}
\vskip -0.4cm
\begin{DescriptionEnregistrement}{Group-dependent non-RSE directories in \dir{isotope}}{7.5cm}\label{table:pt}
\RealEnr
{PROB-TABLE\blank{2}}{$12,N_{\rm part}$}{~}
{Probability tables. $N_{\rm part}$ is the total number of reactions
represented by probability tables. 12 is the maximum allowed order of a
probability table.}
\OptRealEnr
{SIGQT-SIGS\blank{2}}{$K_g$}{$I_{\rm proc}=4$}{b}
{Probability table in secondary slowing-down cross section.}
\OptRealEnr
{SIGQT-SLOW\blank{2}}{$K_g,K_g$}{$I_{\rm proc}=4$}{b}
{Slowing-down correlated weight matrix.}
\OptRealVar
{\listedir{isotope2}}{$K_g,L_g$}{*}{1}
{Set of records, each containing the correlated weights
between the current total xs and the total xs of {\sl isotope2}. $L_g$ is the
order of the probability table for {\sl isotope2}. (*) This data is optional
and is provided only if $I_{\rm proc}\ge 3$ and if the mutual self-shielding
effect is to be taken into account.}
\IntEnr
{ISM-LIMITS\blank{2}}{$2,L$}
{Minimum (index 1) and maximum (index 2) secondary group for each Legendre
order of the scattering matrices}
\end{DescriptionEnregistrement}
\vskip -0.4cm
\begin{DescriptionEnregistrement}{Group-dependent RSE directories in \dir{isotope}}{7.5cm}\label{table:rse}
\DbleEnr
{RSE-TABLE\blank{3}}{$N_{\rm part}, K_g$}{~}
{Resonance spectrum expansion (RSE) table $\shadowP_g$. $N_{\rm part}$ is the total number of flux and reactions
represented by RSE tables and $K_g$ is the RSE rank (equal to the number of base points). The table is obtained as
$$\shadowP_g=\shadowX_g \shadowV_g \shadowW_g^{-1} \shadowT_g$$
\noindent where $\shadowX_g$ is a $N_{\rm part} \times N_{\rm dil}$ double precision matrix containing dilution-dependent
homogeneous flux and effective cross sections in group $g$, as recovered from the Draglib or Apollo2 file.}
\DbleEnr
{SIGT\_V\blank{6}}{$K_g$}{~}
{Double precision vector corresponding to the base points in microscopic total cross sections. These
values are the eigenvalues of the linear transformation. These base points are located in the following diagonal matrix:
$$\left[{\rm diag}(\sigma^*_{k,g})\right]=\shadowT_g^\top \shadowU_g^\top \left[{\rm diag}(\sigma^{*(m)}_g)\right] \shadowU_g \shadowT_g$$
\noindent where $\left[{\rm diag}(\sigma^{*(m)}_g)\right]$ is a $N_{{\rm ufg},g} \times N_{{\rm ufg},g}$ diagonal matrix containing UFG microscopic total cross section values.}
\DbleEnr
{WEIGHT\_V\blank{4}}{$K_g$}{~}
{Double precision weight vector $$\bff(\omega)_g={1\over{u_g-u_{g-1}}} \bff(1)^\top \shadowU_g \shadowT_g$$
\noindent where $\bff(1)^\top$ is a row vector of ones used to sum over indices $m$ of the UFG mesh.}
\DbleEnr
{GAMMA\_V\blank{5}}{$K_g$}{~}
{Double precision gamma vector $$\bff(\gamma)_g=\bff(1)^\top \left[{\rm diag}(\Delta u_g^{(m)})\right] \shadowU_g \shadowT_g .$$}
\IntEnr
{ISM-LIMITS\blank{2}}{$2,L$}
{Minimum (index 1) and maximum (index 2) secondary group for each Legendre
order of the scattering matrices}
\end{DescriptionEnregistrement}
\vskip -0.4cm
\begin{DescriptionEnregistrement}{Subgroup projection of {\sl isotope2} for the RSE method}{7.5cm}\label{table:spmrse}
\OptDirlEnr
{SIGT\_M\blank{6}}{$G$}{*}
{Set of matrices representing the {\sl subgroup projection} of {\sl isotope2} microscopic total cross sections on {\sl isotope} base
points in group $g$. Each matrix of size $K_g \times K_g$ is defined as
$$\left[\sigma^{*b/a}_{k,\ell,g}\right]=\shadowT_g^\top \shadowU_g^\top \left[{\rm diag}(\sigma^{*b(m)}_g)\right] \shadowU_g \shadowT_g$$
\noindent where $\left[{\rm diag}(\sigma^{*b(m)}_g)\right]$ is a $N_{{\rm ufg},g} \times N_{{\rm ufg},g}$ diagonal matrix containing UFG microscopic total cross section values for {\sl isotope2}.
(*) This data is optional and is provided only if {\sl isotope2} is resonant and if {\sl isotope2} $\neq$ {\sl isotope}.}
\DirlEnr
{SCAT\_M\blank{6}}{$n_{\rm pos}$}
{Set of matrices representing the {\sl subgroup projection} of {\sl isotope2} microscopic scattering cross sections on {\sl isotope} base
points in group $g$. Each matrix of size $K_g \times K_h$ is defined as
$$\left[\sigma^{*b/a}_{k,\ell,g\leftarrow h}\right]=\shadowT_g^\top \shadowU_g^\top \left[\sigma^{*b(m\leftarrow n)}_{{\rm s},g \leftarrow h}\right] \shadowU_h \shadowT_h$$
\noindent where $\left[\sigma^{*b(m\leftarrow n)}_{{\rm s},g \leftarrow h}\right]$ is a $N_{{\rm ufg},g} \times N_{{\rm ufg},h}$ matrix containing UFG microscopic scattering cross section values for {\sl isotope2}. Here, $n_{\rm pos}$ is the total number of scattering double precision matrices taking into account self-scattering and out-of-group scattering. Record {\sl isotope} (i. e., {\sl isotope2} $\equiv$ {\sl isotope} and $a\equiv b$) is always present.}
\IntEnr
{NJJS00\blank{6}}{$G$}
{Bandwidth $n_{{\rm njj},g}$ of records {\tt SCAT\_M} for {\sl isotope2}. $n_{\rm pos}=\sum_g n_{{\rm njj},g}$.}
\end{DescriptionEnregistrement}
\eject
|