summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDmccg.tex
blob: 851dc516f64793d40be15673ce2dcacce61a826e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
\subsection{The \moc{mccgt} dependent records on a \dir{tracking} directory}\label{sect:mccgtrackingdir}

When the \moc{MCCGT:} module is used ($\mathsf{CDOOR}$={\tt 'MCCG'}), an additional state vector
named {\tt MCCG-STATE} is set in \moc{EXCELT:} data structure. The components $\mathcal{M}^{t}_{i}$
of {\tt MCCG-STATE} are:

\begin{itemize}

\item $\mathcal{M}^{t}_{1}$: ({\tt LCACT}) The polar quadrature type used with the method of characteristics 
\begin{displaymath}
\mathcal{M}^{t}_{1} = \left\{
\begin{array}{rl}
 0 & \textrm{Gauss-Legendre} \\
 1 & \textrm{CACTUS type 1} \\
 2 & \textrm{CACTUS type 2} \\
 3 & \textrm{McDaniel} \\
 4 & \textrm{McDaniel with $P_1$ constraint} \\
 5 & \textrm{Gauss optimized.}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{2}$: ({\tt NMU}) The order of the polar quadrature.

\item $\mathcal{M}^{t}_{3}$: ({\tt KRYL}) GMRES acceleration switch:
\begin{displaymath}
\mathcal{M}^{t}_{3} = \left\{
\begin{array}{rl}
 0 & \textrm{free inner iterations} \\
 \ge 1 & \textrm{GMRES$(\mathcal{M}^{t}_{3})$ acceleration of inner iterations} \\
 \le 1 & \textrm{Bi-CGSTAB acceleration of inner iterations}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{4}$: ({\tt IDIFC}) Type of solution operator:
\begin{displaymath}
\mathcal{M}^{t}_{4} = \left\{
\begin{array}{rl}
 0 & \textrm{transport flux solution selected} \\
 1 & \textrm{CDD diffusion flux solution selected (no inner iterations are performed} \\
   & \textrm{in this case, only an ACA resolution is performed)}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{5}$: ({\tt NMAX}) The maximum number of elements in a single track.

\item $\mathcal{M}^{t}_{6}$: ({\tt LMCU}) The dimension of the connection matrix {\tt MCU}.

\item $\mathcal{M}^{t}_{7}$: ({\tt IACC}) ACA preconditioning switch:
\begin{displaymath}
\mathcal{M}^{t}_{7} = \left\{
\begin{array}{rl}
 0 & \textrm{no ACA preconditioning} \\
 \ge 1 & \textrm{ACA preconditioning of inner/multigroup iterations}
\end{array} \right.
\end{displaymath}
If the number of inner iterations is set to 1, ACA is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{7}$ is the maximum number of iterations allowed to solve the ACA system.

\item $\mathcal{M}^{t}_{8}$: ({\tt ISCR}) SCR preconditioning switch:
\begin{displaymath}
\mathcal{M}^{t}_{8} = \left\{
\begin{array}{rl}
 0 & \textrm{no SCR preconditioning} \\
 \ge 1 & \textrm{SCR preconditioning of inner/multigroup iterations}
\end{array} \right.
\end{displaymath}
If the number of inner iterations is set to 1, SCR is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{8}$ is the maximum number of iterations allowed to solve the SCR system.

\item $\mathcal{M}^{t}_{9}$: ({\tt LPS}) The dimension of the surface-to-region collision probabilities array if SCR is used.

\item $\mathcal{M}^{t}_{10}$: ({\tt ILU}) The type of preconditioning for the resolution with BICGSTAB of the ACA corrective system if ACA is used:
\begin{displaymath}
\mathcal{M}^{t}_{10} = \left\{
\begin{array}{rl}
 0 & \textrm{no preconditioning} \\
 1 & \textrm{diagonal preconditioning} \\
 \ge 2 & \textrm{ILU0 preconditioning}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{11}$: ({\tt ILEXA}) Flag to force the usage of exact exponentials for preconditioner calculation:
\begin{displaymath}
\mathcal{M}^{t}_{11} = \left\{
\begin{array}{rl}
 0 & \textrm{not forced} \\
 1 & \textrm{forced}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{12}$: ({\tt ILEXF}) Flag to force the usage of exact exponentials for flux calculation:
\begin{displaymath}
\mathcal{M}^{t}_{12} = \left\{
\begin{array}{rl}
 0 & \textrm{not forced} \\
 1 & \textrm{forced}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{13}$: ({\tt MAXI}) Maximum number of inner iterations.

\item $\mathcal{M}^{t}_{14}$: ({\tt LTMT}) Flag for the usage of a tracking merging technique while building the ACA matrices in order to obtain a two-step ACA acceleration:
\begin{displaymath}
\mathcal{M}^{t}_{14} = \left\{
\begin{array}{rl}
 0 & \textrm{no tracking merging} \\
 1 & \textrm{tracking merging}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{15}$: ({\tt STIS}) Flag for the flux integration strategy by the characteristics method:
\begin{displaymath}
\mathcal{M}^{t}_{15} = \left\{
\begin{array}{rl}
 0 & \textrm{direct approach with asymptotical treatment} \\
 1 & \textrm{``Source term isolation'' approach: optimized strategy with asymptotical treatment} \\
-1 & \textrm{"MOCC/MCI"-like approach: optimized strategy without asymptotical treatment}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{16}$: ({\tt NPJJM}) Effective number of angular mode-to-mode self-collision probabilities to be calculated per group and region if $\mathcal{M}^{t}_{15}=1$ e.g.
\begin{center}
\begin{tabular}{|c|c|c|}
 anisotropy & 2D & 3D \\ \hline
$P_0$       &  1 &  1 \\
$P_1$       &  4 &  7 \\
$P_2$       & 13 & 27 \\
$P_3$       & 31 & 76 \\ \hline
\end{tabular}
\end{center}

\item $\mathcal{M}^{t}_{17}$: ({\tt LMCU0}) Effective number of non-diagonal elements to store for the ILU0 decomposition for ACA preconditioning.
 
\item $\mathcal{M}^{t}_{18}$: ({\tt IFORW}) Flag to set the solution type for the ACA and characteristics system:
\begin{displaymath}
\mathcal{M}^{t}_{18} = \left\{
\begin{array}{rl}
 0 & \textrm{direct solution} \\
 1 & \textrm{adjoint solution}
\end{array} \right.
\end{displaymath}

\item $\mathcal{M}^{t}_{19}$: ({\tt NFUNL}) Number of spherical harmonics components used to expand the flux and the sources.

\item $\mathcal{M}^{t}_{20}$: ({\tt NLIN}) Number of polynomial components used to expand the flux and the sources in space.

\end{itemize}

The following records will also be present on the main level of a \dir{tracking}
directory.

%\rotatebox[origin=c]{90}{
\begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in
\dir{tracking}}{8.0cm}
\IntEnr
  {MCCG-STATE\blank{2}}{$40$}
  {Vector describing the various parameters associated with this data structure $\mathcal{M}^{t}_{i}$,
  as defined in \Sect{mccgtrackingdir}.}
\RealEnr
  {REAL-PARAM\blank{2}}{$4$}{}
  {Real parameters $\mathcal{R}_{i}$ for the MCCG tracking.}
\RealEnr
  {XMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{}
  {Inverse of the polar quadrature sines.}
\RealEnr
  {ZMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{}
  {Cosines of the polar quadrature set.}
\RealEnr
  {WZMU\$MCCG\blank{3}}{$\mathcal{M}^{t}_{2}$}{}
  {Weights of the polar quadrature set.}
\OptIntEnr
  {PI\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{S}^t_{15} > 0$}
  {Permutation array for ACA according to $i_\textrm{old}=\Pi(i_\textrm{new})$. The dimension of this array is $$N_{\rm dim}=\cases{\mathcal{S}^t_{1}+\mathcal{S}^t_{5} &if $\mathcal{S}^t_9=0$; \cr
  \mathcal{S}^t_1 &if $\mathcal{S}^t_9=1$. }$$}
\OptIntEnr
  {INVPI\$MCCG\blank{2}}{$\mathcal{S}^t_{1}+\mathcal{S}^t_{5}$}{$\mathcal{S}^t_{15} > 0$}
  {Inverse permutation array for ACA $i_\textrm{new}=\Pi(i_\textrm{old})$}
\IntEnr
  {NZON\$MCCG\blank{3}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}
  {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface.}
\OptIntEnr
  {NZONA\$MCCG\blank{2}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$}
  {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface (-7 for void boundary conditions).}
\RealEnr
  {V\$MCCG\blank{6}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{}
  {Volumes and numerical surfaces.}
\OptRealEnr
  {VA\$MCCG\blank{5}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$}{}
  {Renumbered Volumes and numerical surfaces.}
\OptIntEnr
  {KM\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{M}^{t}_{7}>0$}
  {Connection matrix for ACA.}
\OptIntEnr
  {IM\$MCCG\blank{5}}{$N_{\rm dim}+1$}{$\mathcal{M}^{t}_{7}>0$}
  {Connection matrix for ACA.}
\OptIntEnr
  {MCU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{6}$}{$\mathcal{M}^{t}_{7}>0$}
  {Connection matrix for ACA.}
\OptIntEnr
  {JU\$MCCG\blank{5}}{$N_{\rm dim}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{S}^t_{15} > 0$ \\ $\mathcal{M}^t_{3}\ge2$ \end{tabular}\right.$}
  {Used for ILU0 decomposition in the preconditioning of ACA system.}
\OptIntEnr
  {IS\$MCCG\blank{5}}{$\mathcal{S}^t_{5}$}{$\mathcal{M}^t_{1}>0$}
  {Connection matrix for surface-to-volume probability in SCR.}
\OptIntEnr
  {JS\$MCCG\blank{5}}{$\mathcal{M}^t_{7}$}{$\mathcal{M}^t_{1}>0$}
  {Connection matrix for surface-to-volume probability in SCR.}
\IntEnr
  {ISGNR\$MCCG\blank{2}}{$8(\mathcal{S}^{t}_{6})^2$}
  {Signs for spherical harmonics on the 8 octant angular modes.} 
\OptIntEnr
  {KEYCUR\$MCCG\blank{1}}{$\mathcal{S}^t_5$}{$\mathcal{S}^t_{9}=1$}
  {Index for outgoing currents at the domain boundaries.} 
\IntEnr
  {KEYFLX\$ANIS\blank{1}}{$\mathcal{S}^t_1,\mathcal{M}^t_{20},\mathcal{M}^t_{19}$}
  {Location in unknown vector of averaged regional flux moments.} 
\OptIntEnr
  {KEYANI\$MCCG\blank{1}}{$(\mathcal{S}^{t}_{6})^2$}{$\mathcal{S}^t_9=1$}
  {Index for currents.}
\OptIntEnr
  {PJJIND\$MCCG\blank{1}}{$2\mathcal{M}^{t}_{16}$}{$\mathcal{M}^t_{15}=1$}
  {Index of modes connection for non vanishing angular mode-to-mode self-collision probabilities}
  
 \OptIntEnr
  {IM0\$MCCG\blank{4}}{$N_{\rm dim}+1$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$}
  {Connection matrix for non-diagonal elements of ILU0-ACA.}
\OptIntEnr
  {MCU0\$MCCG\blank{3}}{$\mathcal{M}^{t}_{17}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$}
  {Connection matrix for non-diagonal elements of ILU0-ACA.}
  
\end{DescriptionEnregistrement}%}

\noindent
with the real parameter $\mathcal{R}_{i}$, representing:
\begin{itemize}
\item $\mathcal{R}^{t}_{1}$: Convergence criterion on inner iterations.
\item $\mathcal{R}^{t}_{2}$: Step characteristics selection criterion:
\begin{displaymath}
\mathcal{R}^{t}_{2} = \left\{
\begin{array}{rl}
 0.0 & \textrm{step characteristics scheme} \\
>0.0 & \textrm{diamond differencing scheme.}
\end{array} \right.
\end{displaymath}
\item $\mathcal{R}^{t}_{3}$: Track spacing in cm for 3D prismatic tracking.
\item $\mathcal{R}^{t}_{4}$: Tracking symmetry factor for maximum track length calculation during the calculation of a 3D prismatic tracking.
\end{itemize}

The following records will also be present in the \namedir{PROJECTION} directory of a \dir{tracking}
directory when a prismatic tracking is considered.

\begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in
\namedir{PROJECTION}}{8.0cm}
\OptRealEnr
  {ZCOORD\blank{6}}{$\mathcal{M}^{t}_{18}+1$}{$\mathcal{S}^{t}_{39} > 0$}{cm}
  {The $z-$directed mesh position}
\OptIntEnr
  {IND2T3\blank{6}}{$N_{ind}$}{$\mathcal{S}^{t}_{39} > 0$}
  {Volume and surfaces index for a 3D prismatic geometry. Its size is $N_{ind}=(N_{2D}+1)(\mathcal{M}^{t}_{18}+2)$ where $N_{2D}$ is the number of volumes and surfaces in the initial 2D tracking}
\OptDbleEnr
  {VNORF\blank{7}}{$N_{nor}$}{$\mathcal{S}^{t}_{39} > 0$}{}
  {Angular dependent normalization factors for a 3D prismatic extended tracking. Its size is $N_{nor}= 2 \mathcal{S}^{t}_{1} \mathcal{M}^{t}_{2} N_{\textrm{angl}}$ where $N_{\textrm{angl}}$ is the number of tracking angles in the initial 2D tracking}
  
\end{DescriptionEnregistrement}

\eject