1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
|
\section{Contents of a \dir{macrolib} directory}\label{sect:macrolibdir}
A \dir{macrolib} directory always contains the set of macroscopic multigroup cross
sections associated with a set of mixtures. The structure of this directory,
is quite different to that associated with an \dir{isotope} directory (see
\Sect{isotopedir}). First, it is multi-level, namely, it contains sub-directories.
Moreover instead of having one directory per mixture which contains the
associated multigroup cross section, one will have one directory component per group containing
multi-mixture information. Finally its contents will vary depending on the operator
which was used to create it. Here for convenience we will define the variable $\mathcal{M}$ to
identify the creation operator:
\begin{displaymath}
\mathcal{M} = \left\{
\begin{array}{ll}
0 & \textrm{if the directory is created by the \moc{MAC:} operator}\\
1 & \textrm{if the directory is created by the \moc{LIB:} or \moc{EVO:} operator}\\
2 & \textrm{if the directory is created by the \moc{EDI:} operator}\\
3 & \textrm{if the directory is created by the \moc{OUT:} operator or by an interpolation operator}
\end{array} \right.
\end{displaymath}
In the case where the \moc{LIB:} or \moc{EDI:} operator is used to create this directory,
it is embedded as a subdirectory in a \dir{microlib} or an \dir{edition} directory.
For the other cases, it appears on the root level of the \dds{macrolib} data structure.
\subsection{State vector content for the \dir{macrolib} data structure}\label{sect:macrolibstate}
The dimensioning parameters for the \dir{macrolib} data structure, which are stored in
the state vector $\mathcal{S}^{M}$, represent:
\begin{itemize}
\item The number of energy groups ${G}=\mathcal{S}^{M}_{1}$
\item The number of mixtures $N_{m}=\mathcal{S}^{M}_{2}$
\item The order for the scattering anisotropy $L=\mathcal{S}^{M}_{3}$
($L=1$ is an isotropic collision; $L=2$ is a linearly anisotropic collision,
etc.)
\item The maximum number of fissile isotopes in a mixture $N_{f}=\mathcal{S}^{M}_{4}$
\item The number of additional $\phi$--weighted editing cross sections $N_{e}=\mathcal{S}^{M}_{5}$
\item The transport correction option $I_{tr}=\mathcal{S}^{M}_{6}$
\begin{displaymath}
I_{tr} = \left\{
\begin{array}{ll}
0 & \textrm{do not use a transport correction}\\
1 & \textrm{use an APOLLO-type transport correction (micro-reversibility at
all energies)}\\
2 & \textrm{recover a transport correction from the cross-section library}\\
4 & \textrm{use a leakage correction based on {\tt NTOT1} data.}
\end{array} \right.
\end{displaymath}
\item The number of precursor groups for delayed neutron $N_{d}=\mathcal{S}^{M}_{7}$
\item The number of physical albedo $N_{A}=\mathcal{S}^{M}_{8}$
\item The type of leakage $I_{l}=\mathcal{S}^{M}_{9}$
\begin{displaymath}
I_{l} = \left\{
\begin{array}{ll}
0 & \textrm{no diffusion/leakage coefficient available}\\
1 & \textrm{isotropic diffusion/leakage coefficient available}\\
2 & \textrm{anisotropic diffusion/leakage coefficient available.}
\end{array} \right.
\end{displaymath}
\item The maximum Legendre order of the weighting functions $I_{w}=\mathcal{S}^{M}_{10}$
\begin{displaymath}
I_{w} = \left\{
\begin{array}{ll}
0 & \textrm{use the flux as weighting function for all cross sections}\\
1 & \textrm{use the fundamental current ${\cal J}$ as weighting function for
scattering cross sections with}\\
& \textrm{order $\ge 1$ and compute both $\phi$-- and
${\cal J}$--weighted total cross sections.}
\end{array} \right.
\end{displaymath}
\item The number of delta cross section sets $I_{\rm step}=\mathcal{S}^{M}_{11}$ used
for generalized perturbation theory (GPT) or kinetics calculations:
\begin{displaymath}
I_{\rm step} = \left\{
\begin{array}{ll}
0 & \textrm{no delta cross section sets}\\
>0 & \textrm{number of delta cross section sets.}
\end{array} \right.
\end{displaymath}
\item Discontinuity factor flag $I_{\rm df}=\mathcal{S}^{M}_{12}$:
\begin{displaymath}
I_{\rm df} = \left\{
\begin{array}{ll}
0 & \textrm{no discontinuity factor information}\\
1 & \textrm{multigroup boundary current information is available}\\
2 & \textrm{boundary flux information (see \Sect{macroADF}) is available}\\
3 & \textrm{discontinuity factor information (see \Sect{macroADF}) is available}\\
4 & \textrm{matrix ($G \times G$) discontinuity factor information (see \Sect{macroADF}) is available.}
\end{array} \right.
\end{displaymath}
\item Adjoint macrolib flag $I_{\rm adj}=\mathcal{S}^{M}_{13}$:
\begin{displaymath}
I_{\rm adj} = \left\{
\begin{array}{ll}
0 & \textrm{direct macrolib}\\
1 & \textrm{adjoint macrolib.}
\end{array} \right.
\end{displaymath}
\item SPH-information $I_{\rm sph}=\mathcal{S}^{M}_{14}$:
\begin{displaymath}
I_{\rm sph} = \left\{
\begin{array}{ll}
0 & \textrm{no SPH information available}\\
1 & \textrm{SPH information is available.}
\end{array} \right.
\end{displaymath}
\item Type of weighting in {\tt EDI:} module $I_{\rm pro}=\mathcal{S}^{M}_{15}$:
\begin{displaymath}
I_{\rm pro} = \left\{
\begin{array}{ll}
0 & \textrm{use a flux weighting}\\
1 & \textrm{use an adjoint--direct (a.k.a., product) flux weighting. Only available if $\mathcal{M}\ge 2$}
\end{array} \right.
\end{displaymath}
\item Group form factor index $I_{\rm gff}=\mathcal{S}^{M}_{16}$:
\begin{displaymath}
I_{\rm gff} = \left\{
\begin{array}{ll}
0 & \textrm{no group form factor information}\\
>0 & \textrm{number of form factors per mixture and per energy group (see \Sect{macroGFF}).}
\end{array} \right.
\end{displaymath}
\item Number of companion particles in coupled sets $I_{\rm part}=\mathcal{S}^{M}_{17}$:
\begin{displaymath}
I_{\rm part} = \left\{
\begin{array}{ll}
0 & \textrm{the macrolib doesn't include coupled sets}\\
>0 & \textrm{number of companion particles.}
\end{array} \right.
\end{displaymath}
\end{itemize}
\subsection{The main \dir{macrolib} directory}\label{sect:macrolibdirmain}
The following records and sub-directories will be found on the first level of a \dir{macrolib}
directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{macrolib}}{8.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{Signature of the \dir{macrolib} data structure ($\mathsf{SIGNA}=${\tt L\_MACROLIB\blank{2}}).}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure
$\mathcal{S}^{M}_{i}$, as defined in \Sect{macrolibstate}.}
\OptCharEnr
{ADDXSNAME-P0}{$(N_{e})*8$}{$N_{e} \ge 1$}
{Names of the additional $\phi$--weighted editing cross sections ($\mathsf{ADDXS}_k$).
These names should not appear in Tables~\ref{tabl:tabnonlegendre} and \ref{tabl:tablegendre}.}
\OptIntEnr
{FISSIONINDEX}{$N_{m},N_{f}$}{$N_{f} \ge 1,\mathcal{M}=1$}
{For each mixture $i$ contains the index of each fissile isotope $j$. The index is
pointing to a component of record \moc{ISOTOPESUSED} or \moc{ISOTOPERNAME}
of /microlib/.}
\OptRealEnr
{ENERGY\blank{6}}{$G+1$}{$\mathcal{M}\ge 1$}{eV}
{Energy group limits $E_{g}$}
\OptRealEnr
{DELTAU\blank{6}}{$G$}{$\mathcal{M}\ge 1$}{}
{Lethargy width of each group $U_{g}$}
\OptRealEnr
{ALBEDO\blank{6}}{$N_{A}, G$}{$N_{A}> 0$}{}
{Multigroup and surface ordered physical albedos. The dimension is R$(N_{A},G,G)$ in case where matrix albedos are used.}
\OptRealEnr
{VOLUME\blank{6}}{$N_{m}$}{$\mathcal{M}\ge 2$}{cm$^{3}$~~}
{Volume of region containing each mixture $V_{m}$}
\OptRealEnr
{MIXTURESDENS}{$N_{m}$}{$\mathcal{M}=1$}{g/cm$^{3}$~~}
{Volumetric mass density of each mixture $\rho_{m}$}
\OptRealEnr
{FLUXDISAFACT}{$G$}{$\mathcal{M}=2$}{}
{Ratio of the flux in the fuel to the flux in the cell $F_{g}$ after homogenization}
\OptRealEnr
{LAMBDA-D\blank{4}}{$N_{d},N_{f}$}{$N_{d}\ge 1$}{s$^{-1}$}
{Radioactive decay constants of each delayed neutron precursor group, for each
fissile isotope.}
\OptRealEnr
{BETA-D\blank{6}}{$N_{d},N_{f}$}{$N_{d}\ge 1$}{}
{Delayed-neutron fraction for each delayed neutron precursor group, for each
fissile isotope.}
\OptRealEnr
{K-EFFECTIVE\blank{1}}{$1$}{$N_{f} \ge 1$}{}
{Effective multiplication constant $k_{\mathrm{eff}}$}
\OptRealEnr
{K-INFINITY\blank{2}}{$1$}{$N_{f} \ge 1$}{}
{Infinite multiplication constant $k_{\infty}$}
\OptRealEnr
{B2\blank{2}B1HOM\blank{3}}{$1$}{$I_{l} \ge 1$}{cm$^{-2}$~~}
{Homogeneous Buckling $B_{\mathrm{hom}}$}
\OptRealEnr
{B2\blank{2}HETE\blank{4}}{$3$}{$I_{l}=2$}{cm$^{-2}$}
{Directional Buckling $B_{j}$}
\OptRealEnr
{TIMESTAMP\blank{3}}{$3$}{$\mathcal{M}=1$}{}
{A vector $T_{j}$ containing three elements. The first element $T_{1}=t$ is the time in days, the
second element $T_{2}=B$ is the burnup in MW day T$^{-1}$ and the third element $T_{3}=w$ is the
irradiation in Kb$^{-1}$}
\DirlEnr
{GROUP\blank{7}}{$G$}
{List of energy-group sub-directories. Each component of the list is a directory containing
the reference macroscopic cross-section information associated with a specific secondary group.}
\OptCharEnr
{PARTICLE\blank{4}}{$*1$}{$I_{\rm part}\ge 1$}
{Character name of the particle associated to the macrolib. Usual names for
particles are {\tt N} (neutrons), {\tt G} (photons), {\tt B} (electrons),
{\tt C} (positrons) and {\tt P} (protons).}
\OptCharEnr
{PARTICLE-NAM}{($I_{\rm part}+1$)$*1$}{$I_{\rm part}\ge 1$}
{Character name associated to each particle.}
\OptIntEnr
{PARTICLE-NGR}{$I_{\rm part}+1$}{$I_{\rm part}\ge 1$}
{Number of energy groups associated to each particle.}
\OptRealEnr
{PARTICLE-MC2}{$I_{\rm part}+1$}{$I_{\rm part}\ge 1$}{eV}
{Rest energy associated to each particle.}
\OptRealVar
{\listedir{penergy}}{$G_i+1$}{$I_{\rm part}\ge 1$}{eV}
{Set of arrays containing energy groups limits for a companion particle. The character name
of each sub-directory is the concatenation of the character*1 name of the particle with ``{\tt ENERGY}''.
For example, {\tt GENERGY} contains the energy mesh of secondary photons ($G_i+1$ values).}
\OptDirlVar
{\listedir{grpdir}}{$G$}{$I_{\rm part}\ge 1$}
{List of energy-group sub-directories. Each component of the list is a directory containing
scattering transition cross-section information associated with a specific secondary group.
The directory \listedir{grpdir} name is the concatenation of {\tt GROUP-} with the character*6
name of the companion particle responsible for scattering transitions.}
\OptDirlEnr
{STEP\blank{8}}{$I_{\rm step}$}{$I_{\rm step}\ge 1$}
{List of GPT or kinetics perturbation sub-directories. Each component of
this list contains a single
list of energy-group sub-directories following the \moc{GROUP} specification.
This \moc{GROUP} list contains variations or derivatives of the reference cross-section set.}
\OptDirEnr
{ADF\blank{9}}{$I_{\rm df} \ge 1$}
{ADF--related information as presented in \Sect{macroADF}.}
\OptDirEnr
{GFF\blank{9}}{$I_{\rm gff} \ge 1$}
{Group form factor information as presented in \Sect{macroGFF}.}
\OptDirEnr
{SPH\blank{9}}{$I_{\rm sph} = 1$}
{SPH--related input data as presented in \Sect{macroSPH}.}
\end{DescriptionEnregistrement}
\subsection{The group sub-directory \moc{GROUP} in \dir{macrolib}}\label{sect:macrolibdirgroup}
Each component of the list \moc{GROUP} is a directory containing cross-section information
corresponding to a single energy group. Inside each groupwise directory, the following
records associated with vectorial cross sections will be found:
\begin{DescriptionEnregistrement}{Vectorial cross section records and directories in
\moc{GROUP}}{7.0cm}
\label{tabl:tabnonlegendre}
\RealEnr
{NTOT0\blank{7}}{$N_{m}$}{cm$^{-1}$}
{The $\phi$--weighted total cross section $\Sigma_{0,m}^{g}$}
\OptRealEnr
{NTOT1\blank{7}}{$N_{m}$}{$\mathcal{M}=2; \ I_{w}\ge 1$}{cm$^{-1}$}
{The ${\cal J}$--weighted total cross section $\Sigma_{1,m}^{g}$}
\OptRealEnr
{TRANC\blank{7}}{$N_{m}$}{$I_{tr}=2$}{cm$^{-1}$}
{The transport correction $\Sigma_{tc,m}^{g}$}
\RealEnr
{FIXE\blank{8}}{$N_{m}$}{cm$^{-3}$s$^{-1}$}
{Fixed sources $S_{m}^{g}$.}
\OptRealEnr
{NUSIGF\blank{6}}{$N_{m},N_{f}$}{$N_{f}\ge 1$}{cm$^{-1}$}
{The product of $\Sigma_{f,m}^{g}$, the fission cross section with
$\nu_{m}^{{\rm ss},g}$, the steady-state number of neutron produced per fission,
$\nu\Sigma_{f,m}^{g}$}
\OptRealEnr
{CHI\blank{9}}{$N_{m},N_{f}$}{$N_{f}\ge 1$}{}
{The steady-state energy spectrum of the neutron emitted by fission $\chi_{m}^{{\rm ss},g}$}
\OptRealVar
{\{nusid\}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{cm$^{-1}$}
{The product of $\Sigma_{f,m}^{g}$, the fission cross section with
$\nu_{m,\ell}^{{\rm D},g}$, the averaged number of fission--emitted delayed
neutron produced in the precursor group $\ell$,
$\nu\Sigma_{f,m,\ell}^{{\rm D},g}$}
\OptRealVar
{\{chid\}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{}
{The energy spectrum of the fission--emitted delayed neutron
in the precursor group $\ell$, $\chi_{m,\ell}^{{\rm D},g}$}
\OptRealEnr
{FLUX-INTG\blank{3}}{$N_{m}$}{$\mathcal{M}\ge 2$}{cm s$^{-1}$}
{The volume-integrated flux $\Phi_{m}^{g}$}
\OptRealEnr
{FLUX-INTG-P1}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{w}\ge 1$}{cm s$^{-1}$}
{The volume-integrated fundamental current ${\cal J}_{m}^{g}$}
\OptRealEnr
{COURX-INTG\blank{2}}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{\rm intcur}=1$}{cm s$^{-1}$}
{The volume-integrated net current along the $X$-axis $J_{{\rm X},m}^{g}$. Only provided
with SN and MOC discretizations.}
\OptRealEnr
{COURY-INTG\blank{2}}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{\rm intcur}=1$}{cm s$^{-1}$}
{The volume-integrated net current along the $Y$-axis $J_{{\rm Y},m}^{g}$. Only provided
with SN and MOC 2D and 3D discretizations.}
\OptRealEnr
{COURZ-INTG\blank{2}}{$N_{m}$}{$\mathcal{M}\ge 2; \ I_{\rm intcur}=1$}{cm s$^{-1}$}
{The volume-integrated net current along the $Z$-axis $J_{{\rm Z},m}^{g}$ Only provided
with SN and MOC 3D discretizations.}
\OptRealEnr
{NWAT0\blank{7}}{$N_{m}$}{$I_{\rm pro}=1$}{1}
{The multigroup neutron adjoint flux spectrum $\phi_{m}^{*g}$}
\OptRealEnr
{NWAT1\blank{7}}{$N_{m}$}{$I_{w}\ge 1; \ I_{\rm pro}=1$}{1}
{The multigroup fundamental adjoint current spectrum ${\cal J}_{m}^{*g}$}
\RealEnr
{OVERV\blank{7}}{$N_{m}$}{cm$^{-1}$s}
{The average of the inverse neutron velocity \hbox{$<1/v>_{m}^g$}}
\OptRealEnr
{DIFF\blank{8}}{$N_{m}$}{$I_{l}=1$}{cm}
{The isotropic diffusion coefficient
$D_{m}^{g}$}
\OptRealEnr
{DIFFX\blank{7}}{$N_{m}$}{$I_{l}=2$}{cm}
{The $x$-directed diffusion coefficient
$D_{x,m}^{g}$}
\OptRealEnr
{DIFFY\blank{7}}{$N_{m}$}{$I_{l}=2$}{cm}
{The $y$-directed diffusion coefficient
$D_{y,m}^{g}$}
\OptRealEnr
{DIFFZ\blank{7}}{$N_{m}$}{$I_{l}=2$}{cm}
{The $z$-directed diffusion coefficient
$D_{z,m}^{g}$}
\OptRealEnr
{NSPH\blank{8}}{$N_{m}$}{$\mathcal{M}=2$}{1}
{SPH equivalence factors $\mu_{m}^{g}$. By default, these factors are set equal to 1.0.
Otherwise, all the cross sections, diffusion coefficients and integrated fluxes stored on the {\sc
macrolib} are SPH--corrected.}
\OptRealEnr
{H-FACTOR\blank{4}}{$N_{m}$}{$\mathcal{M}=2$}{eV cm$^{-1}$}
{Energy production coefficients $H_{m}^{g}$ (product of each macroscopic cross section
times the energy emitted by this reaction).}
\OptRealEnr
{ESTOPW\blank{6}}{$N_{m},2$}{*}{MeV cm$^{-1}$}
{Initial and final stopping power. Information provided if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.}
\OptRealEnr
{EMOMTR\blank{6}}{$N_{m}$}{*}{cm$^{-1}$}
{Restricted momentum transfer cross section. Information provided only if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.}
\OptRealEnr
{C-FACTOR\blank{4}}{$N_{m}$}{*}{electron cm$^{-1}$}
{Charge deposition cross section. Information provided if {\tt PARTICLE}$=${\tt B}, {\tt C} or {\tt P}.}
\OptRealVar
{\listedir{xsname}}{$N_{m}$}{$N_{e}\ge 1$}{cm$^{-1}$}
{Set of cross section records specified by $\mathsf{ADDXS}_{k}$}
\end{DescriptionEnregistrement}
The set of delayed neutron records {\sl \{nusid\}} and {\sl \{chid\}} will be
composed, using the following FORTRAN instructions, as $\mathsf{NUSID}$ and $\mathsf{CHID}$,
respectively
\begin{displaymath}
\mathtt{WRITE(}\mathsf{NUSID}\mathtt{,'(A6,I2.2)')} \ \mathtt{'NUSIGF'},ell
\end{displaymath}
\begin{displaymath}
\mathtt{WRITE(}\mathsf{CHID}\mathtt{,'(A3,I2.2)')} \ \mathtt{'CHI'},ell
\end{displaymath}
for $1\leq ell \leq N_d$. For example, in the case where two group cross sections are considered
($N_d=2$), the following records would be generated:
\begin{DescriptionEnregistrement}{Example of delayed--neutron records in
\moc{GROUP}}{8.0cm}
\OptRealEnr
{NUSIGF01\blank{4}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{cm$^{-1}$}
{The product of $\Sigma_{f,m}^{g}$, the fission cross section with
$\nu_{m,1}^{{\rm D},g}$, the averaged number of fission--emitted delayed
neutron produced in the precursor group $\ell=1$,
$\nu\Sigma_{f,m,1}^{{\rm D},g}$}
\OptRealEnr
{CHI01\blank{7}}{$N_{m},N_{f}$}{$N_{d}\ge 1$}{}
{The energy spectrum of the fission--emitted delayed neutron
in the precursor group $\ell=1$, $\chi_{m,1}^{{\rm D},g}$}
\OptRealEnr
{NUSIGF02\blank{4}}{$N_{m},N_{f}$}{$N_{d}\ge 2$}{cm$^{-1}$~~}
{The product of $\Sigma_{f,m}^{g}$, the fission cross section with
$\nu_{m,2}^{{\rm D},g}$, the averaged number of fission--emitted delayed
neutron produced in the precursor group $\ell=2$,
$\nu\Sigma_{f,m,2}^{{\rm D},g}$}
\OptRealEnr
{CHI02\blank{7}}{$N_{m},N_{f}$}{$N_{d}\ge 2$}{}
{The energy spectrum of the fission--emitted delayed neutron
in the precursor group $\ell=2$, $\chi_{m,2}^{{\rm D},g}$}
\end{DescriptionEnregistrement}
\vskip 0.2cm
In the case where $N_{e}=3$ and
\begin{displaymath}
\mathsf{ADDXS}_{k} = \left\{
\begin{array}{lll}
\mathtt{NG} & \textrm{for} & k=1\\
\mathtt{N2N}& \textrm{for} & k=2\\
\mathtt{NFTOT}& \textrm{for} & k=3
\end{array} \right.
\end{displaymath}
the following reactions will be available in the data structure described
in Table~\ref{tabl:tabnonlegendre}:
\begin{DescriptionEnregistrement}{Additional cross section records}{7.0cm}
\RealEnr
{NG\blank{10}}{$N_{m}$}{cm$^{-1}$}
{The neutron capture cross section $\Sigma_{{\rm c},m}^{g}$}
\RealEnr
{N2N\blank{9}}{$N_{m}$}{cm$^{-1}$}
{The cross section
$\Sigma_{{\rm (n,2n)},m}^{g}$ for the reaction
$^{A}_{Z}X+n \to ^{A-1}_{Z}X+2n$}
\RealEnr
{NFTOT\blank{7}}{$N_{m}$}{cm$^{-1}$}
{The neutron fission cross section $\Sigma_{{\rm f},m}^{g}$}
\end{DescriptionEnregistrement}
The information associated with the multigroup scattering matrix, which gives the probability for a
neutron in group $h$ to appear in group $g$ after a collision with an isotope in mixture $m$
is represented by the form:
\begin{displaymath}
\Sigma_{s,m}^{h\to g}(\vec{\Omega}\to\vec{\Omega}')
=\sum_{l=0}^{L}{{2l+1}\over{4\pi}} P_{l}(\vec{\Omega}\cdot\vec{\Omega}')
\Sigma_{l,m}^{h\to g}
=\sum_{l=0}^{L}\sum_{m=-l}^{l}
Y_{l}^{m}(\vec{\Omega})Y_{l}^{m}(\vec{\Omega}')\Sigma_{l,m}^{h\to g}
\end{displaymath}
using a series expansion to order $L$ in spherical harmonic. Assuming that the
spherical harmonic are orthonormalized,
we can define $\Sigma_{l,m}^{h\to g}$ in terms of $\Sigma_{s,m}^{h\to
g}(\vec{\Omega}\to\vec{\Omega}')$ using the following integral:
\begin{displaymath}
\Sigma_{l,m}^{h\to g}
=\int_{4\pi}d^{2}\Omega \ \Sigma_{s,m}^{h\to g}(\vec{\Omega}\to\vec{\Omega}')
P_{l}(\vec{\Omega}\cdot\vec{\Omega}')
\end{displaymath}
Note that this definition of $\Sigma_{l,m}^{h\to g}$ is not unique and some authors
include the factor $2l+1$ directly in the different angular moments of the
scattering cross section.
\vskip 0.2cm
Here instead of storing the $G\times M$
matrix $\Sigma_{l,m}^{h\to g}$ associated with each final energy group $g$, a vector which
contains a compress form of the scattering matrix will be considered.
We will first define three integer vectors $n_{l,m}^{g}$,
$h_{l,m}^{g}$ and $p_{l,m}^{g}$ for order $l$ in the scattering cross section,
final energy group $g$ and mixture $m$. They will contain respectively the number of
initial energy groups $h$ for which the scattering cross section to group $g$ does not vanish, the
maximum energy group index for which scattering to the final group $g$ does not vanishes and the
position in the compressed scattering vector where the data associated with mixture $m$ for each
energy group $g$ can be found. Here $p_{l,m}^{g}$ is directly related to $n_{l,m}^{g}$ by
\begin{displaymath}
p_{l,m}^{g}=1+\sum_{k=1}^{m-1} n_{l,k}^{g}
\end{displaymath}
\begin{figure}[htbp]
\begin{center}
\epsfxsize=8cm
\centerline{ \epsffile{scat.eps}}
\parbox{14cm}{\caption{Numbering of scattering elements in {\tt 'SCAT'} matrices.}\label{fig:scat}}
\end{center}
\end{figure}
Now consider the following 4 groups isotropic scattering cross
section matrix associated with mixture 1 and 2 ($N_{m}=2$) respectively:
\begin{center}
\begin{tabular}{c||cccc|cccc}
&\multicolumn{4}{l|}{Mixture $m=1$} &
\multicolumn{4}{l}{Mixture $m=2$} \\
$\sigma_{0,m}^{h\to g}$ &$g=1$ & $g=2$ & $g=3$ & $g=4$ &
$g=1$ & $g=2$ & $g=3$ & $g=4$ \\ \hline\hline
$h=1$ & $a_{1}$ & $a_{2}$ & 0 & 0 &
$b_{1}$ & $b_{2}$ & 0 & 0 \\
$h=2$ & 0 & $a_{3}$ & $a_{4}$ & $a_{5}$ &
$b_{3}$ & $b_{4}$ & $b_{5}$ & 0 \\
$h=3$ & 0 & $a_{6}$ & $a_{7}$ & 0 &
0 & $b_{6}$ & $b_{7}$ & 0 \\
$h=4$ & 0 & $a_{8}$ & 0 & $a_{9}$ &
0 & 0 & $b_{8}$ & $b_{9}$ \\ \hline\hline
$h_{0,m}^{g}$ & 1 & 4 & 3 & 4 &
2 & 3 & 4 & 4 \\
$n_{0,m}^{g}$ & 1 & 4 & 2 & 3 &
2 & 3 & 3 & 1 \\
$p_{0,m}^{g}$ & 1 & 1 & 1 & 1 &
2 & 5 & 3 & 4 \\
\end{tabular}
\end{center}
\noindent
The compressed scattering matrix will then take the following form for each final group $g$:
\begin{eqnarray*}
\Sigma_{0,k,c}^{1}&=&\left(a_{1},b_{3},b_{1}\right) \\
\Sigma_{0,k,c}^{2}&=&\left(a_{8},a_{6},a_{3},a_{2},b_{6},b_{4},b_{2}\right) \\
\Sigma_{0,k,c}^{3}&=&\left(a_{7},a_{4},b_{8},b_{7},b_{5}\right) \\
\Sigma_{0,k,c}^{4}&=&\left(a_{9},0,a_{5},b_{9}\right)
\end{eqnarray*}
Finally, we will also save the total scattering cross section vector of order
$l$ which is defined as
\begin{displaymath}
\Sigma_{l,m,s}^{g}=\sum_{h=1}^{G} \Sigma_{l,m}^{g\to h}
\end{displaymath}
and the diagonal element of the scattering matrix:
\begin{displaymath}
\Sigma_{l,m,w}^{g}=\Sigma_{l,m}^{g\to g}
\end{displaymath}
In the case where only the order $l=0$ and $l=1$ moment of scattering cross section are non
vanishing (isotropic and linearly anisotropic scattering) the following records can be found on the
group directory.
\begin{DescriptionEnregistrement}{Scattering cross section records in \moc{GROUP}}{7.0cm}
\label{tabl:tablegendre}
\RealEnr
{SIGS00\blank{6}}{$N_{m}$}{cm$^{-1}$}
{The isotropic component ($l=0$) of the total scattering cross
section
$\Sigma_{0,m,s}^{g}$}
\RealEnr
{SIGW00\blank{6}}{$N_{m}$}{cm$^{-1}$}
{The isotropic component ($l=0$) of the within group scattering cross
section
$\Sigma_{0,m,w}^{g}$}
\IntEnr
{IJJS00\blank{6}}{$N_{m}$}
{Highest energy group number for which
the isotropic component of the scattering cross section to group $g$ does not
vanish, $h_{0,m}^{g}$}
\IntEnr
{NJJS00\blank{6}}{$N_{m}$}
{Number of energy groups for which
the isotropic component of the scattering cross section to group $g$ does not
vanish, $n_{0,m}^{g}$}
\IntEnr
{IPOS00\blank{6}}{$N_{m}$}
{Location in the isotropic compressed scattering matrix where information associated with mixture
$m$ begins $p_{0,m}^{g}$}
\RealEnr
{SCAT00\blank{6}}{$\sum_{m=1}^{N_{m}} n_{0,m}^{g}$}{cm$^{-1}$}
{Compressed isotropic component of the scattering matrix
$\Sigma_{0,k,c}^{g}$}
\OptRealEnr
{SIGS01\blank{6}}{$N_{m}$}{$L\ge 1$}{cm$^{-1}$}
{The linearly anisotropic component of the total scattering cross
section
$\Sigma_{1,m,s}^{g}$}
\OptRealEnr
{SIGW01\blank{6}}{$N_{m}$}{$L\ge 1$}{cm$^{-1}$}
{The linearly anisotropic component of the within group scattering cross
section
$\Sigma_{1,m,w}^{g}$}
\OptIntEnr
{IJJS01\blank{6}}{$N_{m}$}{$L\ge 1$}
{Highest energy group number for which
the linearly anisotropic component of the scattering cross section to group $g$ does not
vanish, $h_{1,m}^{g}$}
\OptIntEnr
{NJJS01\blank{6}}{$N_{m}$}{$L\ge 1$}
{Number of energy groups for which
the linearly anisotropic component of the scattering cross section to group $g$ does not
vanish, $n_{1,m}^{g}$}
\OptIntEnr
{IPOS01\blank{6}}{$N_{m}$}{$L\ge 1$}
{Location in the linearly anisotropic compressed scattering matrix where information
associated with mixture $m$ begins $p_{1,m}^{g}$}
\OptRealEnr
{SCAT01\blank{6}}{$\sum_{m=1}^{N_{m}} n_{1,m}^{g}$}{$L\ge 1$}{cm$^{-1}$}
{Compressed linearly anisotropic component of the scattering matrix
$\Sigma_{1,k,c}^{g}$}
\end{DescriptionEnregistrement}
\subsection{The \moc{/ADF/} sub-directory in \dir{macrolib}}\label{sect:macroADF}
Sub-directory containing boundary-related edition information. This information can be boundary fluxes, discontinuity factors or
assembly discontinuity factors (ADF). Boundary fluxes can be used to compute discontinuity factors or to perform Selengut-type
normalization with the {\sl superhomog\'en\'eisation} (SPH) method.
\begin{DescriptionEnregistrement}{Records in the \moc{/ADF/} sub-directory}{7.5cm}
\OptIntEnr
{NTYPE\blank{7}}{$1$}{$I_{\rm df} \ge 2$}
{Number of ADF-type boundary edits.}
\OptCharEnr
{HADF\blank{8}}{({\tt NTYPE})$*8$}{$I_{\rm df} \ge 2$}
{Name of each ADF-type boundary flux or discontinuity factor edit. Any name can be used, but some
names are standard. Standard names are: $=$ \moc{FD\_C}:
corner flux edition; $=$ \moc{FD\_B}: surface (assembly gap) flux edition; $=$ \moc{FD\_H}:
row flux edition (these are the first row of surrounding cells in the assembly).}
\OptRealEnr
{ALBS00\blank{6}}{$G,2$}{$I_{\rm df} = 1$}{}
{Multigroup boundary currents $J^{g}_{\rm out}$ and $J^{g}_{\rm in}$. These values correspond to surfaces where
a \moc{VOID} or \moc{ALBE} boundary condition is set in DRAGON.}
\OptRealEnr
{AVG\_FLUX\blank{5}}{$N_{m},G$}{$I_{\rm df} = 2$}{}
{Averaged fluxes in the complete assembly. Used as denominator to compute the ADF in an homogeneous assembly.}
\OptRealVar
{\listedir{type}}{$N_{m},G$}{$I_{\rm df} = 2,\, 3$}{}
{Averaged surfacic fluxes ($I_{\rm df} = 2$) or discontinuity factors ($I_{\rm df} = 3$) in a material mixture. Name {\sl type} is a component of
{\tt HADF} array.}
\OptRealVar
{\listedir{type}}{$N_{m},G,G$}{$I_{\rm df} = 4$}{}
{Matrix discontinuity factors in a material mixture. Name {\sl type} is a component of {\tt HADF} array.}
\end{DescriptionEnregistrement}
\subsection{The \moc{/GFF/} sub-directory in \dir{macrolib}}\label{sect:macroGFF}
Sub-directory containing group form factor information. This information can be used to perform
{\sl fine power reconstruction} over a fuel assembly.
\begin{DescriptionEnregistrement}{Records in the \moc{/GFF/} sub-directory}{7.5cm}
\DirEnr
{GFF-GEOM\blank{4}}
{Macro--geometry directory. This geometry corresponds to an unfolded fuel assembly and is compatible
for a discretization with TRIVAC. This directory follows the specification presented in \Sect{geometrydirmain}.}
\RealEnr
{VOLUME\blank{6}}{$N_{m},I_{\rm gff}$}{cm$^{3}$}
{Volumes of homogenized cells $V_{m}$}
\RealEnr
{NWT0\blank{8}}{$N_{m},I_{\rm gff},G$}{s$^{-1}$cm$^{-2}$}
{The multigroup neutron flux spectrum $\phi_{w}^{g}$}
\RealEnr
{H-FACTOR\blank{4}}{$N_{m},I_{\rm gff},G$}{eV cm$^{-1}$}
{Energy production coefficients $H_{m}^{g}$ (product of each macroscopic cross section
times the energy emitted by this reaction).}
\RealEnr
{NFTOT\blank{7}}{$N_{m},I_{\rm gff},G$}{cm$^{-1}$}
{The neutron fission cross section $\Sigma_{{\rm f},m}^{g}$}
\IntEnr
{FINF\_NUMBER\blank{1}}{$N_{\rm ifx}$}
{Array containing the $N_{\rm ifx}$ $ifx$ indices used by the user every time the multicompo were ``enriched"
with different options.}
\RealEnr
{\listedir{FINF}}{$N_{m},I_{\rm gff},G$}{s$^{-1}$cm$^{-2}$}
{The diffusion multigroup neutron flux spectrum in an infinite domain $\psi_{m,p}^{d,\infty}$. See
\moc{NAP:} module description in IGE344 user guide for details.}
\end{DescriptionEnregistrement}
The set of diffusion multigroup neutron flux spectrum records \listedir{FINF} will be
composed, using the following FORTRAN instructions as $\mathsf{HVECT}$,
\begin{displaymath}
\mathtt{WRITE(}\mathsf{HVECT}\mathtt{,'(5HFINF\_,I3.3)')} \ \mathtt{'ifx'}
\end{displaymath}
where {\tt ifx} is a value chosen by the user (default value is 0). A different value can be chosen every time the multicompo
are ``enriched" with different options (homogeneous/heterogeneous, tracking options, etc.).
\clearpage
\subsection{The \moc{/SPH/} sub-directory in \dir{macrolib}}\label{sect:macroSPH}
The first level of the macrolib directory may contains a {\sl superhomog\'en\'eisation} (SPH) sub-directory \moc{/SPH/}
containing input data:
\begin{DescriptionEnregistrement}{Records in the \moc{/SPH/} sub-directory}{7.5cm}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{\rm sph}_{i}$.}
\OptCharEnr
{SPH\$TRK\blank{5}}{$*12$}{$\mathcal{S}^{\rm sph}_{1}\ge 2$}
{Name of the flux solution door.}
\OptRealEnr
{SPH-EPSILON\blank{1}}{$1$}{$\mathcal{S}^{\rm sph}_{1}\ge 2$}{1}
{Convergence criterion for stopping the SPH iterations.}
\end{DescriptionEnregistrement}
The dimensioning parameters for this data structure, which are stored in the state vector
$\mathcal{S}^{\rm sph}$, represent values related to the last editing step:
\begin{itemize}
\item Type of SPH equivalence factors:
$I_{\rm type}=\mathcal{S}^{\rm sph}_{1}$
\begin{displaymath}
I_{\rm type} = \left\{
\begin{array}{ll}
0 & \textrm{no SPH correction;} \\
1 & \textrm{the SPH factors are read from LCM;} \\
2 & \textrm{homogeneous macro-calculation (non-iterative procedure or H\'ebert-Benoist} \\
& \textrm{SPH-5 procedure);} \\
3 & \textrm{any type of $P_{ij}$ macro-calculation;} \\
4 & \textrm{any type of diffusion, $S_n$, $P_n$ or $SP_n$ macro-calculation.}
\end{array} \right.
\end{displaymath}
\item Type of SPH equivalence normalization $I_{\rm norm}=\mathcal{S}^{\rm sph}_{2}$
\begin{displaymath}
I_{\rm norm} = \left\{
\begin{array}{ll}
<0 & \textrm{asymptotic normalization with respect to homoheneous mixture} -I_{\rm norm}; \\
1 & \textrm{average flux normalization;} \\
2 & \textrm{Selengut normalization using {\tt ALBS00} information;} \\
3 & \textrm{Selengut normalization using {\tt FD\_B} boundary fluxes;} \\
4 & \textrm{Generalized Selengut normalization (EDF-type);} \\
5 & \textrm{Selengut normalization with surface leakage;} \\
6 & \textrm{Selengut normalization with water gap normalization;} \\
7 & \textrm{average flux normalization in fissile zones.}
\end{array} \right.
\end{displaymath}
\item The maximum number of SPH iterations $\mathcal{S}^{\rm sph}_{3}$
\item The acceptable number of SPH iterations with an increase in convergence error before aborting $\mathcal{S}^{\rm sph}_{4}$
\item Flag for forcing the production of a macrolib or microlib at LHS $I_{\rm lhs} = \mathcal{S}^{\rm sph}_{5}$
\begin{displaymath}
I_{\rm lhs} = \left\{
\begin{array}{ll}
0 & \textrm{produce an object of the type of the RHS;} \\
1 & \textrm{produce an edition object;} \\
2 & \textrm{produce a microlib;} \\
3 & \textrm{produce a macrolib.}
\end{array} \right.
\end{displaymath}
\item Type of SPH factors $I_{\rm imc} = \mathcal{S}^{\rm sph}_{6}$
\begin{displaymath}
I_{\rm imc} = \left\{
\begin{array}{ll}
1 & \textrm{factors compatible with diffusion theory, $P_n$ and $SP_n$ equations} \\
2 & \textrm{factors compatible with other types of transport-theory macro-calculations} \\
3 & \textrm{factors compatible with $P_{ij}$ macro-calculations and Bell acceleration.} \\
\end{array} \right.
\end{displaymath}
\item The first group index where the equivalence process is applied $\mathcal{S}^{\rm sph}_{7}$
\item The maximum group index where the equivalence process is applied $\mathcal{S}^{\rm sph}_{8}$
\end{itemize}
\subsection{Delayed neutron information}
We will present space-time kinetics equations in the context of the diffusion
approximation (i.e. using the Fick law) and equations used in a lattice code
to produce condensed and homogenized information. These equations will be useful to understand the
information written in the {\sc macrolib} specification. Similar expressions can
be obtained in transport theory. Note that delayed neutron information
$\beta_\ell$ and $\Lambda$ can also be computed at the scale of the complete reactor
provided that bilinear direct--adjoint condensation and homogenization relations
are used.
\vskip 0.2cm
The continuous-energy space-time diffusion equation is written:
\begin{eqnarray}
\nonumber {\partial\over \partial t}\left[ {1 \over v(E)} \ \phi(\vec r,E,t)\right] &=&
\sum_j \chi_j^{\rm pr}(E)\int_0^\infty dE' \ \nu_j^{\rm pr}(\vec r,E',t)\Sigma_{{\rm f},j}(\vec r,E',t)
\phi(\vec r,E',t)\\
\nonumber &+&\sum_j\sum_\ell\chi_{\ell,j}^{\rm D}(E)\lambda_\ell c_{\ell,j}(\vec r,t) + \nabla \cdot D(\vec r,E,t) \nabla\phi(\vec r,E,t)\\
&-& \Sigma(\vec r,E,t) \phi(\vec r,E,t) + \int_0^\infty dE' \ \Sigma_{\rm s0}(\vec r,E \leftarrow E',t)
\phi(\vec r,E',t)
\label{eq:eq1}
\end{eqnarray}
\noindent together with the set of $N_d$ precursor equations:
\begin{equation}
{\partial c_{\ell,j}(\vec r,t) \over \partial t}=\int_0^\infty dE \ \nu_{\ell,j}^{\rm D}(\vec r,E,t)
\Sigma_{{\rm f},j}(\vec r,E,t) \phi(\vec r,E,t)-\lambda_\ell c_{\ell,j}(\vec r,t) \ \ ; \ \ \
\ell=1,N_d
\label{eq:eq2}
\end{equation}
\noindent where
\begin{description}
\item [$\phi(\vec r,E,t)$=] neutron flux
\item [$\chi_j^{\rm pr}(E)$=] prompt neutron spectrum for a fission of isotope $j$
\item [$\nu_j^{\rm pr}(\vec r,E,t)$=] number of prompt neutrons for a fission of isotope $j$
\item [$\Sigma_{{\rm f},j}(\vec r,E,t)$=] macroscopic fission cross section for isotope $j$
\item [$\chi_{\ell,j}^{\rm D}(E)$=] neutron spectra for delayed neutrons emitted by precursor group $\ell$
due to a fission of isotope $j$
\item [$\lambda_\ell$=] radioactive decay constant for precursor group $\ell$. This
constant is assumed to be independent of the fissionable isotope $j$.
\item [$c_{\ell,j}(\vec r,t)$=] concentration of the $\ell$--th precursor for a fission of isotope $j$
\item [$D(\vec r,E,t)$=] diffusion coefficient
\item [$\Sigma(\vec r,E,t)$=] macroscopic total cross section
\item [$\Sigma_{\rm s0}(\vec r,E \leftarrow E',t)$=] macroscopic scattering cross section
\item [$\nu_{\ell,j}^{\rm D}(\vec r,E,t)$=] number of delayed neutrons in precursor group $\ell$ for a fission of isotope $j$.
\end{description}
\vskip 0.2cm
The neutron spectrum are normalized so that
\begin{equation}
\int_0^\infty dE \ \chi_j^{\rm ss}(E)=1
\end{equation}
\noindent and
\begin{equation}
\int_0^\infty dE \ \chi_\ell^{\rm D}(E)=1 \ \ ; \ \ \ell=1,N_d \ \ \ .
\end{equation}
\vskip 0.2cm
After condensation over energy, Eqs.~(\ref{eq:eq1}) and~(\ref{eq:eq2}) are
written
\begin{eqnarray}
\nonumber <1/v>^g{\partial\over \partial t}\phi^g(\vec r,t) &=& \sum_j
\chi_j^{{\rm pr},g}
\left[1-\sum_\ell\beta_{\ell,j}\right]\sum_h \nu\Sigma_{{\rm f},j}^h(\vec r,t) \phi^h(\vec r,t)\\
\nonumber &+&\sum_j \sum_\ell\chi_{\ell,j}^{{\rm D},g}\lambda_\ell c_{\ell,j}(\vec r,t) + \nabla \cdot D^g(\vec r,t)
\nabla\phi^g(\vec r,t)\\
&-& \Sigma^g(\vec r,t) \phi^g(\vec r,t) +
\sum_h \Sigma_{\rm s0}^{g \leftarrow h}(\vec r,t)
\phi^h(\vec r,t)
\label{eq:eq7}
\end{eqnarray}
\noindent together with the set of $N_d$ precursor equations:
\begin{equation}
{\partial c_{\ell,j}(\vec r,t) \over \partial t}=\beta_{\ell,j} \sum_h
\nu\Sigma_{{\rm f},j}^h(\vec r,t) \phi^h(\vec r,t)-\lambda_\ell c_{\ell,j}(\vec r,t) \ \ ; \ \ \
\ell=1,N_d
\label{eq:eq8}
\end{equation}
\noindent where
\begin{description}
\item [$\nu\Sigma_{{\rm f},j}^h(\vec r,t)$=] product of the number $\nu_j^{\rm ss}(\vec r,E)$ of secondary neutrons
(both prompt and delayed) for a fission of isotope $j$ times the macroscopic fission cross
section for a fission of isotope $j$.
\item [$\beta_{\ell,j}$=] delayed neutron fraction in precursor group $\ell$.
\end{description}
\vskip 0.2cm
The following condensation formulas have been used:
\begin{equation}
\nu_j^{\rm ss}(\vec r,E)=\nu_j^{\rm pr}(\vec r,E)+\sum_\ell \nu_{\ell,j}^{\rm D}(\vec r,E)
\end{equation}
\begin{equation}
\beta_{\ell,j}={\int\limits_0^\infty dE \ \nu_{\ell,j}^{\rm D}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E)
\phi(\vec r,E) \over \int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E)
\phi(\vec r,E)} = {\sum\limits_g \nu\Sigma_{{\rm f},\ell,j}^{{\rm D},g}(\vec r) \phi^g(\vec r) \over
\sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \phi^g(\vec r)}
\end{equation}
\begin{equation}
\left[1-\sum_\ell\beta_{\ell,j}\right]={\int\limits_0^\infty dE \ \nu_j^{\rm pr}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E)
\phi(\vec r,E) \over \int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E)\Sigma_{{\rm f},j}(\vec r,E)
\phi(\vec r,E)} = {\sum\limits_g \nu\Sigma_{{\rm f},j}^{{\rm pr},g}(\vec r)
\phi^g(\vec r) \over \sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \phi^g(\vec r)}
\end{equation}
\begin{equation}
\phi^g(\vec r)=\int_{E_g}^{E_{g-1}} dE \ \phi(\vec r,E)
\end{equation}
\begin{equation}
\chi_j^{{\rm pr},g}=\int_{E_g}^{E_{g-1}} dE \ \chi_j^{\rm pr}(E)
\end{equation}
\begin{equation}
\chi_{\ell,j}^{{\rm D},g}=\int_{E_g}^{E_{g-1}} dE \ \chi_{\ell,j}^{\rm D}(E) \ \ ; \ \ \
\ell=1,N_d
\end{equation}
\begin{equation}
<1/v>^g={1 \over \phi^g(\vec r)} \int_{E_g}^{E_{g-1}} dE \ {\displaystyle 1 \over \displaystyle v(E)} \ \phi(\vec r,E)
\end{equation}
\begin{equation}
\Sigma^g(\vec r)={1 \over \phi^g(\vec r)} \int_{E_g}^{E_{g-1}} dE \ \Sigma(\vec r,E) \ \phi(\vec r,E)
\end{equation}
\begin{equation}
\Sigma_{\rm s0}^{g \leftarrow h}(\vec r)={1 \over \phi^h(\vec r)} \int_{E_g}^{E_{g-1}} dE \int_{E_h}^{E_{h-1}} dE' \ \Sigma_{\rm s0}(\vec r,E \leftarrow E') \ \phi(\vec r,E')
\end{equation}
\begin{equation}
\nu\Sigma_{{\rm f},j}^g(\vec r)={1 \over \phi^g(\vec r)} \int_{E_g}^{E_{g-1}} dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E) \ \ \ .
\end{equation}
\noindent where the variable $t$ has been omitted in order to simplify
the notation.
\vskip 0.2cm
A steady-state fission spectrum (taking into account both prompt and delayed neutrons), for a fission of isotope $j$, is also required for solving the static neutron diffusion equation:
\begin{equation}
\chi_j^{\rm ss}(E)=\left[1-\sum_\ell\beta_{\ell,j}\right] \chi_j^{\rm pr}(E)+\sum_\ell \beta_{\ell,j} \ \chi_{\ell,j}^{\rm D}(E) \ \ \ .
\end{equation}
\vskip 0.2cm
The group-integrated steady-state fission spectrum is therefore given as
\begin{equation}
\chi_j^{{\rm ss},g} = \left[1-\sum_\ell\beta_{\ell,j}\right] \chi_j^{{\rm pr},g}+\sum_\ell \beta_{\ell,j} \ \chi_{\ell,j}^{{\rm D},g} \ \ \ .
\end{equation}
\vskip 0.2cm
The space-time diffusion equation is generally solved by assuming a {\sl unique} averaged fissionable isotope.
In this case, the variable $N_f$ is set to 1 in the {\sc macrolib} specification
and the summations over $j$ disapears in Eqs.~(\ref{eq:eq7}) and~(\ref{eq:eq8}):
\begin{eqnarray}
\nonumber <1/v>^g {\partial\over \partial t}\phi^g(\vec r,t) &=& \chi^{{\rm pr},g}
\left[1-\sum_\ell\beta_\ell\right]\sum_h \nu\Sigma_{\rm f}^h(\vec r,t) \phi^h(\vec r,t)\\
\nonumber &+&\sum_\ell\chi_\ell^{{\rm D},g}\lambda_\ell c_\ell(\vec r,t) + \nabla \cdot D^g(\vec r,t)
\nabla\phi^g(\vec r,t)\\
&-& \Sigma^g(\vec r,t) \phi^g(\vec r,t) +
\sum_h \Sigma_{\rm s0}^{g \leftarrow h}(\vec r,t)
\phi^h(\vec r,t)
\label{eq:eq9}
\end{eqnarray}
\noindent together with the set of $n_d$ precursor equations:
\begin{equation}
{\partial c_\ell(\vec r,t) \over \partial t}=\beta_\ell \sum_g
\nu\Sigma_{\rm f}^g(\vec r,t) \phi^g(\vec r,t)-\lambda_\ell c_\ell(\vec r,t) \ \ ; \ \ \
\ell=1,N_d
\label{eq:eq10}
\end{equation}
\vskip 0.2cm
Using additional approximations, the new condensation relations are rewritten as
\begin{equation}
\nu\Sigma_{\rm f}(\vec r,E)=\sum_j \nu\Sigma_{{\rm f},j}(\vec r,E)=\sum_j \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E)
\end{equation}
\begin{equation}
\beta_\ell={\sum\limits_j{\beta_{\ell,j}\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \
\phi(\vec r,E)} \over \sum\limits_j{\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \
\phi(\vec r,E)} } = {\sum\limits_j{\beta_{\ell,j}\sum\limits_g \nu\Sigma_{{\rm
f},j}^g(\vec r) \ \phi^g(\vec r)} \over \sum\limits_j{\sum\limits_g
\nu\Sigma_{{\rm f},j}^g(\vec r) \ \phi^g(\vec r)} } \ \ \ ,
\end{equation}
\vskip 0.2cm
\begin{eqnarray}
\nonumber \chi^{{\rm pr},g}&=&{\sum\limits_j\left[1-\sum\limits_\ell\beta_{\ell,j}\right]{\int\limits_{E_g}^{E_{g-1}}
dE \ \chi_j^{\rm pr}(E) \int\limits_0^\infty dE' \ \nu_j^{\rm ss}(\vec r,E') \ \Sigma_{{\rm f},j}(\vec r,E')
\ \phi(\vec r,E')} \over \left[1-\sum\limits_\ell\beta_\ell\right] \sum\limits_j{\int\limits_0^\infty dE
\ \nu_j^{\rm ss}(\vec r,E) \ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)}} \\
&=& {\sum\limits_j\left[1-\sum\limits_\ell\beta_{\ell,j}\right]{
\chi_j^{{\rm pr},g} \sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r)
\ \phi^h(\vec r)} \over \left[1-\sum\limits_\ell\beta_\ell\right] \sum\limits_j{
\sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r) \ \phi^h(\vec r)}}
\end{eqnarray}
\noindent and
\begin{eqnarray}
\nonumber \chi_\ell^{{\rm D},g}&=&{\sum\limits_j \beta_{\ell,j}{\int\limits_{E_g}^{E_{g-1}} dE \ \chi_{\ell,j}^{\rm D}(E)
\int\limits_0^\infty dE' \ \nu_j^{\rm ss}(\vec r,E') \ \Sigma_{{\rm f},j}(\vec r,E')
\ \phi(\vec r,E')} \over \beta_\ell \sum\limits_j{\int\limits_0^\infty dE \ \nu_j^{\rm ss}(\vec r,E)
\ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)}} \ \ ; \ \ \ \ell=1,N_d \\
&=&{\sum\limits_j \beta_{\ell,j} \ {\chi_{\ell,j}^{{\rm D},g}
\sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r)
\ \phi^h(\vec r)} \over \beta_\ell \sum\limits_j{\sum\limits_h \nu\Sigma_{{\rm f},j}^h(\vec r)
\ \phi^h(\vec r)}} \ \ ; \ \ \ \ell=1,N_d \ \ \ .
\end{eqnarray}
\vskip 0.2cm
The above definitions ensure that the group-integrated steady-state fission spectrum is given as
\begin{equation}
\chi^{{\rm ss},g} = \left[1-\sum_\ell\beta_\ell\right] \chi^{{\rm pr},g}+\sum_\ell \beta_\ell \ \chi_\ell^{{\rm D},g} \ \ \ .
\end{equation}
\vskip 0.2cm
A mean neutron generation time can also be written as
\begin{equation}
\Lambda={\int\limits_0^\infty dE \ {\displaystyle 1 \over \displaystyle v(E)} \ \phi(\vec r,E) \over
\sum\limits_j{\int\limits_0^\infty dE \
\nu_j^{\rm ss}(\vec r,E)\ \Sigma_{{\rm f},j}(\vec r,E) \ \phi(\vec r,E)}}={\sum\limits_g <1/v>^g \ \phi^g(\vec r) \over
\sum\limits_j{\sum\limits_g \nu\Sigma_{{\rm f},j}^g(\vec r) \ \phi^g(\vec r)}} \ \ \ .
\end{equation}
\eject
|