blob: 0ecea7f0beec884dfc58e80dc019432dd76c1c9e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
\section{Contents of a \dir{kinet} directory}\label{sect:kinetdir}
The {\tt L\_KINET} specification is used to store the data related to the space-time
neutron kinetics calculations. This directory also contains the main calculations results corresponding
to the current time step of a transient.
\subsection{State vector content for the \dir{kinet} data structure}\label{sect:kinetstate}
The dimensioning parameters for this data structure, which are stored in the state vector
$\mathcal{S}^{k}_{i}$, represent:
\begin{itemize}
\item The current time-step index $N_{tr}=\mathcal{S}^{k}_{1}$
\item The number of delayed-neutron precursor groups $N_{dg}=\mathcal{S}^{k}_{2}$
\item The number of energy groups $N_{gr}=\mathcal{S}^{k}_{3}$
\item The type of geometry $I_{geo} = \mathcal{S}^{k}_{4}$
\item The total number of finite elements $N_{el}=\mathcal{S}^{k}_{5}$
\item The total number of unknowns per energy group $N_{un}=\mathcal{S}^{k}_{6}$
\item The number of flux unknowns per energy group $N_{uf}=\mathcal{S}^{k}_{7}$
\item The number of precursors unknowns per delayed group $N_{up}=\mathcal{S}^{k}_{8}$
\item The number of fissile isotopes $N_{fiss}=\mathcal{S}^{k}_{9}$
\item The type of system matrices $N_{sys}=\mathcal{S}^{k}_{10}$
\item Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}^{k}_{11}$
\item Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}^{k}_{12}$
\item Type of normalization for the flux $I_{\rm norm}=\mathcal{S}^{k}_{13}$ where
\begin{displaymath}
I_{\rm norm} = \left\{
\begin{array}{rl}
0 & \textrm{No normalization} \\
1 & \textrm{Imposed factor} \\
2 & \textrm{Maximum flux normalization} \\
3 & \textrm{Initial power normalization}
\end{array} \right.
\end{displaymath}
\item Maximum number of thermal (up-scattering) iterations $M_{\rm in}=\mathcal{S}^{k}_{14}$
\item Maximum number of outer iterations $M_{\rm out}=\mathcal{S}^{k}_{15}$
\item Initial number of ADI iterations in Trivac $M_{\rm adi}=\mathcal{S}^{k}_{16}$
\item Temporal integration scheme for fluxes $I_{\rm ifl}=\mathcal{S}^{k}_{17}$ where
\begin{displaymath}
I_{\rm ifl} = \left\{
\begin{array}{rl}
1 & \textrm{Implicit scheme ($\Theta_{\rm f}=1$)} \\
2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm f}=0.5$)} \\
3 & \textrm{General theta method}
\end{array} \right.
\end{displaymath}
\item Temporal integration scheme for precursors $I_{\rm ipr}=\mathcal{S}^{k}_{18}$ where
\begin{displaymath}
I_{\rm ipr} = \left\{
\begin{array}{rl}
1 & \textrm{Implicit scheme ($\Theta_{\rm p}=1$)} \\
2 & \textrm{Crank-Nicholson scheme ($\Theta_{\rm p}=0.5$)} \\
3 & \textrm{General theta method} \\
4 & \textrm{Analytical integration method for precursors}
\end{array} \right.
\end{displaymath}
\item Exponential transformation flag $I_{\rm iexp}=\mathcal{S}^{k}_{19}$ where
\begin{displaymath}
I_{\rm iexp} = \left\{
\begin{array}{rl}
0 & \textrm{not used} \\
1 & \textrm{used}
\end{array} \right.
\end{displaymath}
\item Adjoint kinetics calculation flag $I_{\rm adj}=\mathcal{S}^{k}_{20}$ where
\begin{displaymath}
I_{\rm adj} = \left\{
\begin{array}{rl}
0 & \textrm{direct (forward) calculation} \\
1 & \textrm{adjoint (backward) calculation}
\end{array} \right.
\end{displaymath}
\end{itemize}
\goodbreak
\subsection{The main \dir{kinet} directory}\label{sect:kinetdirmain}
The following records and sub-directories will be found in the \dir{kinet} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{kinet}}{8.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_KINET\blank{5}})}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{k}_{i}$,
as defined in \Sect{kinetstate}.}
\RealEnr
{EPS-CONVERGE}{$4$}{}
{Convergence parameters $\Delta_i^\epsilon$}
\CharEnr
{TRACK-TYPE\blank{2}}{$*12$}
{Type of tracking considered ($\mathsf{CDOOR}$). Allowed values are:
{\tt 'BIVAC'} and {\tt 'TRIVAC'}}
\IntEnr
{E-IDLPC\blank{5}}{$N_{el}$}
{Position of averaged precursor concentrations in vector {\tt E-PREC}.}
\RealEnr
{DELTA-T\blank{5}}{$1$}{s}
{Current time increment.}
\RealEnr
{TOTAL-TIME\blank{2}}{$1$}{s}
{Total elapsed time from the beginning of a transient.}
\RealEnr
{BETA-D\blank{6}}{$N_{dg}$}{}
{Delayed-neutron fraction for each delayed-neutron precursor group.}
\RealEnr
{LAMBDA-D\blank{4}}{$N_{dg}$}{s$^{-1}$}
{Radioactive decay constants of each delayed-neutron precursor group.}
\RealEnr
{CHI-D\blank{7}}{$N_{dg},N_{gr}$}{}
{Multigroup delayed-neutron fission spectrum in each precursor group.}
\RealEnr
{E-VECTOR\blank{4}}{$N_{uf},N_{gr}$}{}
{Kinetics solution for fluxes at current time step.}
\RealEnr
{E-PREC\blank{6}}{$N_{up},N_{dg}$}{}
{Kinetics solution for precursor concentrations at current time step.}
\RealEnr
{E-KEFF\blank{6}}{$1$}{}
{Steady-state value of the initial $k_{\rm eff}$.}
\RealEnr
{CTRL-FLUX\blank{3}}{$1$}{}
{Maximum value of flux used for the controlling purpose.}
\RealEnr
{CTRL-PREC\blank{3}}{$N_{up}\times N_{fiss}$}{}
{Precursor concentrations at location of maximum flux.}
\IntEnr
{CTRL-IDL\blank{4}}{$1$}
{Position of a maximum value within the flux vector.}
\IntEnr
{CTRL-IGR\blank{4}}{$1$}
{Energy group number corresponding to a maximum flux value.}
\OptRealEnr
{POWER-INI\blank{3}}{$1$}{$I_{\rm norm}=3$}{MW}
{Initial power.}
\OptRealEnr
{E-POW\blank{7}}{$1$}{$I_{\rm norm}=3$}{MW}
{Actual power.}
\OptRealEnr
{OMEGA\blank{7}}{$N_{mix},N_{gr}$}{$I_{\rm iexp}=1$}{s$^{-1}$}
{Exponential transformation factor. $N_{mix}$ is the number of material mixtures}
\end{DescriptionEnregistrement}
The convergence parameters $\Delta_i^\epsilon$ represent:
\begin{itemize}
\item $\Delta_1^\epsilon$ is the thermal (up-scattering) iteration flux convergence parameter
\item $\Delta_2^\epsilon$ is the outer iteration flux convergence parameter
\item $\Theta_{\rm f}$ is the value of theta-parameter for fluxes
\item $\Theta_{\rm p}$ is the value of theta-parameter for precursors
\end{itemize}
\eject
|