1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
\section{Contents of a
\dir{geometry} directory}\label{sect:geometrydir}
The {\tt L\_GEOM} specification is used to store structured geometric data, i.e., data characterized by some regularity in space. Sub-geometries can be embedded at specific node positions to build a more complex geometry. The following regular geometries can be described with the {\tt L\_GEOM} specification:
\begin{itemize}
\item Cartesian geometries in 1D, 2D and 3D
\item Cylindrical geometries in 1D and 2D ($R-Z$ or $R-\theta$)
\item Spherical geometries in 1D
\item Hexagonal geometries in 2D/3D
\item Various types of cells in 2D/3D Cartesian or hexagonal geometry
\item Cells with clusters of fuel rods
\item Various synthetic geometries (Do-it-yourself Apollo1 assembly and double-heterogeneity).
\end{itemize}
This directory contains a compact description of a geometry.
\subsection{State vector content for the \dir{geometry} data structure}\label{sect:geometrystate}
The dimensioning parameters for this data structure, which are stored in the state vector
$\mathcal{S}^{G}$, represent:
\begin{itemize}
\item The type of of geometry $F_{t}=\mathcal{S}^{G}_{1}$
\begin{displaymath}
F_{t} = \left\{
\begin{array}{rl}
0 & \textrm{Virtual geometry}\\
1 & \textrm{Homogeneous geometry} \\
2 & \textrm{Cartesian 1-D geometry} \\
3 & \textrm{Tube 1-D geometry} \\
4 & \textrm{Sphere 1-D geometry} \\
5 & \textrm{Cartesian 2-D geometry} \\
6 & \textrm{Tube ($R$-$Z$) geometry} \\
7 & \textrm{Cartesian 3-D geometry} \\
8 & \textrm{Hexagonal 2-D geometry} \\
9 & \textrm{Hexagonal 3-D geometry} \\
10 & \textrm{Tube ($R$-$X$) geometry} \\
11 & \textrm{Tube ($R$-$Y$) geometry} \\
12 & \textrm{hexagonal 2--D geometry with triangular mesh} \\
13 & \textrm{$z$-directed hexagonal 3--D geometry with triangular mesh} \\
15 & \textrm{Tube ($R$-$\theta$) 2-D geometry} \\
16 & \textrm{Triangular 2-D geometry} \\
17 & \textrm{Triangular 3-D geometry} \\
20 & \textrm{Cartesian 2-D geometry with annular sub-mesh} \\
21 & \textrm{Cartesian 3-D geometry with $x-$directed cylindrical sub-mesh} \\
22 & \textrm{Cartesian 3-D geometry with $y-$directed cylindrical sub-mesh} \\
23 & \textrm{Cartesian 3-D geometry with $z-$directed cylindrical sub-mesh} \\
24 & \textrm{Hexagonal 2-D geometry with annular sub-mesh} \\
25 & \textrm{Hexagonal 3-D geometry with $z-$directed cylindrical sub-mesh } \\
30 & \textrm{Do-it-yourself geometry} \\
\end{array} \right.
\end{displaymath}
\eject
\item The number of annular or cylindric mesh intervals in the geometry $N_{r}=\mathcal{S}^{G}_{2}$
\item The number of $x-$directed mesh intervals, hexagon or triangles in the geometry $N_{x}=\mathcal{S}^{G}_{3}$
\item The number of $y-$directed mesh intervals in the geometry $N_{y}=\mathcal{S}^{G}_{4}$
\item The number of $z-$directed mesh intervals in the geometry $N_{z}=\mathcal{S}^{G}_{5}$
\item The total number of mesh intervals in the geometry $N_{k}=\mathcal{S}^{G}_{6}$
\begin{itemize}
\item for $F_{t}=$0 or 1, $N_{k}=1$;
\item for $F_{t}=$2, 5 or 7, $N_{k}=\max(N_{x},1)\times \max(N_{y},1)\times \max(N_{z},1)$;
\item for $F_{t}=$3, 6, 10 or 11, $N_{k}=N_{r}\times \max(N_{x},1)\times \max(N_{y},1)\times \max(N_{z},1)$
\item for $F_{t}=$4, $N_{k}=N_{r}$;
\item for $F_{t}=$8 or 9, $N_{k}=N_{x}\times \max(N_{z},1)$;
\item for $F_{t}=$12 or 13, $N_{k} = 6\times N_{x}^{2}\times \max(N_{z},1)$;
\item for $F_{t}=$20, 21, 22 or 23, $N_{k} = (N_{r}+1)\times \max(N_{x},1)\times \max(N_{y},1)\times \max(N_{z},1)$;
\item for $F_{t}=$24 or 25, $N_{k} = (N_{r}+1)\times \max(N_{z},1)$.
\end{itemize}
\item The maximum number of mixtures used in this geometry $M_{m}=\mathcal{S}^{G}_{7}$
\item The cell flag $F_{c}=\mathcal{S}^{G}_{8}$
\begin{displaymath}
F_{c} = \left\{
\begin{array}{rl}
0 & \textrm{Cell option not activated} \\
1 & \textrm{Cell option present}
\end{array} \right.
\end{displaymath}
\item The number of sub-geometries defined in this geometry $F_{g}=\mathcal{S}^{G}_{9}$
\item The merge flag $F_{m}=\mathcal{S}^{G}_{10}$
\begin{displaymath}
F_{m} = \left\{
\begin{array}{rl}
0 & \textrm{Merge option not activated} \\
1 & \textrm{Merge option present}
\end{array} \right.
\end{displaymath}
\item The split flag $F_{s}=\mathcal{S}^{G}_{11}$
\begin{displaymath}
F_{s} = \left\{
\begin{array}{rl}
0 & \textrm{Split option not activated} \\
1 & \textrm{Split option present} \\
2 & \textrm{Split option present. The embedded tubes are not splitted.}
\end{array} \right.
\end{displaymath}
\item The double heterogeneity flag $F_{\mathrm{dh}}=\mathcal{S}^{G}_{12}$
\begin{displaymath}
F_{\mathrm{dh}} = \left\{
\begin{array}{rl}
0 & \textrm{Double heterogeneity option not activated} \\
1 & \textrm{Double heterogeneity option present}
\end{array} \right.
\end{displaymath}
\item The number of cluster sub-geometry $N_{\mathrm{cl}}=\mathcal{S}^{G}_{13}$
\item The type of sectorizarion $F_{\mathrm{sec}}=\mathcal{S}^{G}_{14}$.
This information may be given only if $F_{t}\ge 20$.
\begin{displaymath}
F_{\mathrm{sec}} = \left\{
\begin{array}{rl}
-999 & \textrm{non-sectorized cell processed as a sectorized cell} \\
-1 & \textrm{$\times$--type sectorization} \\
0 & \textrm{non-sectorized cell} \\
1 & \textrm{$+$--type sectorization} \\
2 & \textrm{simultaneous $\times$-- and $+$--type sectorization} \\
3 & \textrm{simultaneous $\times$-- and $+$--type sectorization shifted by 22.5$^\circ$} \\
4 & \textrm{windmill-type sectorization.}
\end{array} \right.
\end{displaymath}
\item Number of tubes that are {\sl not} splitted by the sectors if $F_{\mathrm{sec}}\ne 0$. This integer is selected in interval $0 \le F_{\mathrm{sec2}} \le N_{r}$. $F_{\mathrm{sec2}}=\mathcal{S}^{G}_{15}$.
\item The pin location option $\mathcal{S}^{G}_{18}$. When $\mathcal{S}^{G}_{18}>0$, the pin are located according to $(r,\theta)$ in 2-D and 3-D (center along the cylinder axis in the cell into which they are inserted) while for $\mathcal{S}^{G}_{18}<0$, the pin are
located according to $(x,y)$ in 2-D and $(x,y,z)$ in 3-D. A value of $\mathcal{S}^{G}_{18}=0$, implies that there is no pin in the geometry.
\end{itemize}
\vskip 0.2cm
The radii of a {\tt CARCEL}-- or {\tt HEXCEL}--type geometry are defined as
shown in the following figure:
\vbox{
\begin{center}
\epsfxsize=5.5cm
\centerline{ \epsffile{radius.eps}}
\end{center} }
In case where $F_{\mathrm{sec}}\ne 0$, the elementary cell is splitted with
sectors. Mixture indices are specific in each splitted region. They are defined
as in the following two figures ({\tt isect}$\equiv F_{\mathrm{sec}}$ and {\tt jsect}$\equiv F_{\mathrm{sec2}}$):
\vbox{
\begin{center}
\epsfxsize=16cm
\centerline{ \epsffile{rect3c.eps}}
\end{center} }
\vbox{
\begin{center}
\epsfxsize=13cm
\centerline{ \epsffile{hexa3c.eps}}
\end{center} }
\vskip 0.2cm
In case of an automatic geometry definition using the \moc{NAP:} module, the number of mixtures corresponding to assembly in the original core definition is named $N_{mxa}$ and the number of assembly along X and Y directions are $N_{ax}$ and $N_{ay}$ respectively.
\subsection{The main \dir{geometry} directory}\label{sect:geometrydirmain}
On its first level, the
following records and sub-directories will be found in the \dir{geometry} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{geometry}}{7.5cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_GEOM\blank{6}})}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{G}_{i}$,
as defined in \Sect{geometrystate}.}
\IntEnr
{MIX\blank{9}}{$N_{k}$}
{Record containing the material mixture index $1\le i \le M_m$ per region (for positive indices) or
the sub-geometry index $1\le |i| \le F_g$ per region (for negative indices). {\tt MIX(I)} is set to
zero in voided regions {\tt I} or in regions located outside the domain.}
\OptIntEnr
{HMIX\blank{8}}{$N_{k}$}{*}
{array $H_{i}$ containing the virtual (homogenization) mixtures associated with different regions of the geometry}
\OptRealEnr
{RADIUS\blank{6}}{$N_{r}+1$}{$N_{r}\ge 1$}{cm}
{The radial mesh $R_{i}$ position. The first element of this vector is identical to 0.0}
\OptRealEnr
{OFFCENTER\blank{3}}{$3$}{$N_{r}\ge 1$}{cm}
{The displacement of the center of the annular mesh from the center of a Cartesian cell}
\OptRealEnr
{MESHX\blank{7}}{$N_{x}+1$}{$N_{x}\ge 1$}{cm}
{The $x-$directed mesh position $X_{i}$}
\OptRealEnr
{MESHY\blank{7}}{$N_{y}+1$}{$N_{y}\ge 1$}{cm}
{The $y-$directed mesh position $Y_{i}$}
\OptRealEnr
{MESHZ\blank{7}}{$N_{z}+1$}{$N_{z}\ge 1$}{cm}
{The $z-$directed mesh position $Z_{i}$}
\OptRealEnr
{SIDE\blank{8}}{$1$}{${{\displaystyle 8\le F_{t}\le 11} \atop \displaystyle {24\le F_{t}\le 25}}$}{cm}
{The width of the side of the hexagon $H$}
\OptIntEnr
{SPLITR\blank{6}}{$N_{r}+1$}{$F_{s}\times N_{r}\ge 1$}
{Record containing the radial mesh splitting $S_{r,i}$. A negative value permits a splitting into
equal sub-volumes; a positive value permits a splitting into equal sub-radius spacings}
\OptIntEnr
{SPLITX\blank{6}}{$N_{x}$}{$F_{s}\times N_{x}\ge 1$}
{Record containing the $x-$directed mesh splitting $S_{x,i}$}
\OptIntEnr
{SPLITY\blank{6}}{$N_{y}$}{$F_{s}\times N_{y}\ge 1$}
{Record containing the $y-$directed mesh splitting $S_{y,i}$}
\OptIntEnr
{SPLITZ\blank{6}}{$N_{z}$}{$F_{s}\times N_{z}\ge 1$}
{Record containing the $z-$directed mesh splitting $S_{z,i}$}
\OptIntEnr
{SPLITH\blank{6}}{$1$}{$F_{t}=12,13$}
{value $S_{h}$ of the triangular mesh splitting for triangular hexagons in the geometry. This will lead to a spatial triangular mesh spacing of $H_{s}=H/N_{x}$}
\OptIntEnr
{SPLITL\blank{6}}{$1$}{$F_{t}=8,9$}
{value $S_{h}$ of the lozenge mesh splitting for hexagons in the geometry. This will lead to $3 \times${\tt SPLITL}$^2$ lozenges per hexagon. If unset, the default value is {\tt SPLITL} $=1$.}
\OptIntEnr
{IHEX\blank{8}}{$1$}{$F_{t}= 8,9,12,13,24,25$}
{The type of hexagonal symmetry $\beta_{h}$}
\IntEnr
{NCODE\blank{7}}{$6$}
{Record containing the types of boundary conditions on each surface
$N_{\beta,j}$. {\tt NCODE(1)}: {\tt X-} or {\tt HBC} condition;
{\tt NCODE(2)}: {\tt X+} or {\tt R+} condition; {\tt NCODE(3)}: {\tt Y-}
condition; {\tt NCODE(4)}: {\tt Y+} condition; {\tt NCODE(5)}: {\tt Z-}
condition; {\tt NCODE(6)}: {\tt Z+} condition}
\RealEnr
{ZCODE\blank{7}}{$6$}{}
{Record containing the albedo value on each surface $\beta_{j}$}
\IntEnr
{ICODE\blank{7}}{$6$}
{Record containing the albedo index on each surface $I_{\beta,j}$.
The vector $\beta_{j}$ is used only if $I_{\beta,j}>0$ and $N_{\beta,j}=6$. In the case where
$I_{\beta,j}<0$ and $N_{\beta,j}=6$ the
vector $\beta_{p,j}$ in the directory \dir{macrolib} is used}
\OptIntEnr
{NPIN\blank{8}}{$1$}{$|\mathcal{S}^{G}_{18}|\ne 0$}
{Number $N_{\text{pin}}$ of identical pins in a cluster. All the pins will see identical flux}
\OptRealEnr
{DPIN\blank{8}}{$1$}{$|\mathcal{S}^{G}_{18}|\ne 0$}{cm$^{-3}$}
{Relative density $d_{p,r}$ of pins in a cluster. In this case $N_{\text{pin}}=-1$}
\OptRealEnr
{RPIN\blank{8}}{$k$}{$\mathcal{S}^{G}_{18}=1$}{cm}
{array $R_{\text{pin},j}$ containing the radial positions at which the center of the pins in the cluster are located with respect to the center of the cell ($k=N_{\text{pin}}$). In the case where
$R_{\text{pin},j}$ contains a single element ($k=1$), it is assumed that the pins are all located at the same radial position $R_{\text{ref}}=R_{\text{pin},1}$}
\OptRealEnr
{APIN\blank{8}}{$k$}{$\mathcal{S}^{G}_{18}=1$}{rad}
{array $\theta_{\text{pin},j}$ containing the angular positions at which the center of the pins in the cluster are located with respect to the $x$, $y$ or $z$ axis
respectively for \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} geometry ($k=N_{\text{pin}}$). In the case where
$\theta_{\text{pin},j}$ contains a single element ($k=1$), it is assumed that the first pin is located at $\theta_{\text{ref}}=\theta_{\text{pin},1}$, the remaining pins being located at
$\theta_{\text{pin},j}=\theta_{\text{ref}}+2(j-1)\pi/N_{\text{pin}}$}
\OptRealEnr
{CPINX\blank{7}}{$N_{\text{pin}}$}{$\mathcal{S}^{G}_{18}=-1$}{cm}
{array $X_{\text{pin},j}$ containing the $x$ positions at which the pins in the cluster are centered with respect to the center of the cell}
\OptRealEnr
{CPINY\blank{7}}{$N_{\text{pin}}$}{$\mathcal{S}^{G}_{18}=-1$}{cm}
{array $Y_{\text{pin},j}$ containing the $y$ positions at which the pins in the cluster are centered with respect to the center of the cell}
\OptRealEnr
{CPINZ\blank{7}}{$N_{\text{pin}}$}{$\mathcal{S}^{G}_{18}=-1$}{cm}
{array $Z_{\text{pin},j}$ containing the $z$ positions at which the pins in the cluster are centered with respect to the center of the cell}
\OptDirEnr
{BIHET\blank{7}}{$F_{dh}=1$}
{Directory containing double-heterogeneity related data. This directory can only be present on the root directory.}
\OptRealEnr
{POURCE\blank{6}}{$\mathcal{S}^{G}_{3}$}{$F_{t}=30$}{}
{The proportion of each cell type in the lattice $P_{j}$}
\OptRealEnr
{PROCEL\blank{6}}{$\mathcal{S}^{G}_{3},\mathcal{S}^{G}_{3}$}{$F_{t}=30$}{}
{The pre-calculated probability for a neutron leaving a cell of type $i$ to enter in a
cell of type $j$ without crossing any other cell $P_{i,j}$}
\OptCharEnr
{CELL\blank{8}}{$(F_{g})*12$}{$F_{c}=1$}
{The names of the sub-geometries ($\mathsf{CELL}_{k}$)}
\OptIntEnr
{MERGE\blank{7}}{$N_{k}$}{$F_{m}=1$}
{The merging index corresponding to each region $G_{m,i}$}
\OptIntEnr
{TURN\blank{8}}{$N_{k}$}{$F_{c}=1$}
{The orientation index corresponding to each region $G_{t,i}$. Negative values are used to turn a cell in the Z direction.}
\OptCharEnr
{CLUSTER\blank{5}}{$(F_{cl})*12$}{$F_{cl}\ge 1$}
{The names of the sub-geometries making up the cluster ($\mathsf{CLUSTER}_{k}$)}
\OptDirVar
{\listedir{subgeo}}{$F_{g}\ge 1$}
{Set of sub-directories containing a subgeometry}
\OptCharEnr
{MIX-NAMES\blank{3}}{$(M_{m})*12$}{*}
{The names of the mixtures}
\IntEnr
{A-NX\blank{8}}{$N_{ay}$}{Number of assemblies on each row}
\IntEnr
{A-IBX\blank{7}}{$N_{ay}$}{Position of the first assembly on each row}
\IntEnr
{A-ZONE\blank{6}}{$N_{ch}$}{Number of the assembly associated with each channel. Each assembly may be represented by several channels if they have been heterogeneously homogenized.}
\IntEnr
{A-NMIXP\blank{5}}{1}{The number of mixtures in one heterogeneously homogenized assembly. $N_{mxp}$. Note for homogeneously homogenized assembly $N_{mxp}$ = 1.}
\end{DescriptionEnregistrement}
In the case where a cylindrical correction is applied over a full--core Cartesian
calculation, the following additional data is provided. It is provided if and only if type 20
({\tt CYLI}) boundary conditions are set in the $X$--$Y$ plane (see \Fig{corr}).
\begin{figure}[h!]
\begin{center}
\epsfxsize=5cm
\centerline{ \epsffile{Fig6.eps}}
\parbox{14cm}{\caption{Cylindrical correction in Cartesian geometry}
\label{fig:corr}}
\end{center}
\end{figure}
\begin{DescriptionEnregistrement}{Cylindrical correction related records in \dir{geometry}}{7.5cm}
\RealEnr
{XR0\blank{9}}{$N_{\rm cyl}$}{cm}
{Record containing the coordinate of the $Z$ axis from which the cylindrical correction is applied to
Cartesian geometries. $N_{\rm cyl}$ is the number of radii.}
\RealEnr
{RR0\blank{9}}{$N_{\rm cyl}$}{cm}
{Record containing the radius of the real cylindrical boundary (rrad).}
\RealEnr
{ANG\blank{9}}{$N_{\rm cyl}$}{1}
{Record containing the angle (in radian) of the cylindrical notch. \dusa{ang}(ir) $= {\pi \over 2}$ by default (i.e. the correction is applied at every angle).}
\end{DescriptionEnregistrement}
The type of hexagonal symmetry $\beta_{h}$ is defined as:
\begin{displaymath}
\beta_{h} = \left\{
\begin{array}{rl}
1 & \textrm{S30} \\
2 & \textrm{SA60} \\
3 & \textrm{SB60} \\
4 & \textrm{S90} \\
5 & \textrm{R120} \\
6 & \textrm{R180} \\
7 & \textrm{SA180} \\
8 & \textrm{SB180} \\
9 & \textrm{COMPLETE}
\end{array} \right.
\end{displaymath}
\textrm{S30}, \textrm{SA60} and \textrm{COMPLETE} symmetries are depicted in the following figures. The other types of hexagonal symmetries are defined in the DRAGON users guide.\cite{Dragon5}
\vbox{
\begin{center}
\epsfxsize=9cm
\centerline{ \epsffile{hexs30.eps}}
\end{center} }
\vbox{
\begin{center}
\epsfxsize=6cm
\centerline{ \epsffile{hexcomp.eps}}
\end{center} }
{\tt NCODE} is a record containing the types of boundary conditions on each surface. In Cartesian geometry, the 6 components of {\tt NCODE} are related to sides {\tt X-}, {\tt X+}, {\tt Y-}, {\tt Y+}, {\tt Z-} and {\tt Z+}, respectively. The possibilities are:
\begin{displaymath}
N_{\beta,j} = \left\{
\begin{array}{rl}
0 & \textrm{side not used} \\
1 & \textrm{{\tt VOID}: zero
re-entrant angular flux. This side is an external surface of the domain.} \\
2 & \textrm{{\tt REFL}: reflection boundary condition. In
most DRAGON calculations, this implies} \\
& \textrm{white boundary conditions. In DRAGON the cell is never unfolded to take into} \\
& \textrm{account a REFL boundary condition.} \\
3 & \textrm{{\tt DIAG}: diagonal boundary condition. The side under consideration
has the same} \\
& \textrm{properties as that associated with a diagonal through the
geometry. Note that two} \\
& \textrm{and only two {\tt DIAG} sides must be specified. The
diagonal symmetry is only permitted} \\
& \textrm{for square geometry and in the following
combinations: ({\tt X+} and {\tt Y-}) or ({\tt X-} and {\tt Y+})} \\
4 & \textrm{{\tt TRAN}: translation boundary condition. The side under consideration
is connected} \\
& \textrm{to the opposite side of a Cartesian domain. This option
provides the facility to treat} \\
& \textrm{an infinite geometry with translation
symmetry. The only combinations of} \\
& \textrm{translational symmetry permitted are related to sides ({\tt X-} and {\tt X+}) and/or} \\
& \textrm{({\tt Y-} and {\tt Y+}) and/or ({\tt Z-} and {\tt Z+}).} \\
5 & \textrm{{\tt SYME}: symmetric reflection boundary condition. The side under consideration
is} \\
& \textrm{located outside the domain and that a reflection symmetry is associated with the} \\
& \textrm{adequately directed axis running through the center of the cells closest to this side.} \\
6 & \textrm{{\tt ALBE}: albedo boundary condition. The side under consideration has an
arbitrary} \\
& \textrm{albedo with a real value given in the record {\tt `ZCODE'} or indexed by the record} \\
& \textrm{{\tt `ICODE'}. This side is an external surface of the domain.} \\
7 & \textrm{{\tt ZERO}: zero flux boundary condition. This side is an external surface of the domain.} \\
8 & \textrm{{\tt PI/2}: $\pi$/2 rotation. The side under consideration is characterized by a $\pi / 2$ symmetry.} \\
& \textrm{The only $\pi / 2$ symmetry permitted is related to sides ({\tt X-} and {\tt Y-}). This condition can} \\
& \textrm{be combined with a translation boundary condition:({\tt PI/2 X- TRAN X+}) and/or} \\
& \textrm{({\tt PI/2 Y- TRAN Y+}).} \\
9 & \textrm{{\tt PI}: $\pi$ rotation} \\
10 & \textrm{{\tt SSYM}: specular relexion boundary condition. Such a condition may be
obtained by} \\
& \textrm{unfolding the geometry.} \\
20 & \textrm{{\tt CYLI}: use a cylindrical correction in full--core Cartesian geometry}
\end{array} \right.
\end{displaymath}
In cylindrical geometry, the 3 components of {\tt NCODE} are related to sides {\tt R+}, {\tt Z-} and {\tt Z+}, respectively. The possibilities are: {\tt VOID}, {\tt REFL}, {\tt ALBE} and/or {\tt ZERO}.
\vskip 0.2cm
In hexagonal geometry, the 3 components of {\tt NCODE} are related to sides {\tt H+} (the surface surrounding the hexagonal domain in the X--Y plane), {\tt Z-} and {\tt Z+}, respectively. The possibilities are: {\tt VOID}, {\tt REFL}, {\tt SYME}, {\tt ALBE} and/or {\tt ZERO}.
\vskip 0.2cm
We will now describe the exact meaning of the orientation index $G_{t,i}$. For Cartesian geometries, the eight
possible orientations are shown in the following figure:
\begin{center}
\epsfxsize=8cm
\centerline{ \epsffile{oricart.eps}}
\end{center}
For hexagonal geometries, the twelve
possible orientations are shown in the following figure:
\begin{center}
\epsfxsize=10cm
\centerline{ \epsffile{orihex.eps}}
\end{center}
In the case where $F_{c}=1$, the set of directory \listedir{subgeo} will have the
same name as the variable $\mathsf{CELL}_{k}$. For example, in the case where
$F_{g}=2$ and
\begin{displaymath}
\mathsf{CELL}_{k} = \left\{
\begin{array}{lll}
\mathtt{GEO1} & \textrm{for} & k=1\\
\mathtt{GEO2} & \textrm{for} & k=2
\end{array} \right.
\end{displaymath}
then
the following directories will also be present in the main geometry directory:
\begin{DescriptionEnregistrement}{Cell sub-geometry directory}{7.0cm}
\DirEnr
{GEO1\blank{8}}
{A first \dir{geometry} directory}
\DirEnr
{GEO2\blank{8}}
{A second \dir{geometry} directory}
\end{DescriptionEnregistrement}
In the case where $F_{cl}\ge1$, the set of directory \listedir{subgeo} will have the
same name as the variable $\mathsf{CLUSTER}_{k}$. For example, in the case where
$F_{cl}=2$ and
\begin{displaymath}
\mathsf{CLUSTER}_{k} = \left\{
\begin{array}{lll}
\mathtt{RODS1} & \textrm{for} & k=1\\
\mathtt{RODS2} & \textrm{for} & k=2
\end{array} \right.
\end{displaymath}
then
the following directories will also be present in the main geometry directory:
\begin{DescriptionEnregistrement}{Cluster sub-geometry directory}{7.0cm}
\OptDirEnr
{RODS1\blank{7}}{$F_{g}\ge 1$}
{A first \dir{geometry} directory}
\OptDirEnr
{RODS2\blank{7}}{$F_{g}\ge 1$}
{A second \dir{geometry} directory}
\end{DescriptionEnregistrement}
\subsection{The \moc{/BIHET/} sub-directory in \dir{geometry}}\label{sect:geometrybihet}
The first level of the geometry directory may contains a double-heterogeneity directory \moc{/BIHET/} made of the
following records:
\begin{DescriptionEnregistrement}{Records in the \moc{/BIHET/} sub-directory}{7.5cm}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{dh}_{i}$}
\IntEnr
{NS\blank{10}}{$\mathcal{S}^{dh}_{1}$}
{The number of sub-regions in the micro-structures $N_{\mathrm{micro},i}$}
\RealEnr
{RS\blank{10}}{$\mathcal{S}^{dh}_{2},\mathcal{S}^{dh}_{1}$}{cm}
{The radii of the tubes or spherical shells making up the micro-structures
$R_{\mathrm{micro},i,j}$}
\IntEnr
{MILIE\blank{7}}{$\mathcal{S}^{dh}_{3}$}
{The composite mixture indices used in the definition of the macro-geometry $C_{\mathrm{micro},i,j}$}
\IntEnr
{MIXDIL\blank{6}}{$\mathcal{S}^{dh}_{3}$}
{The mixture indices associated with the diluent in each composite mixtures of the macro-geometry $D_{\mathrm{micro},i,j}$}
\IntEnr
{MIXGR\blank{7}}{$\mathcal{S}^{dh}_{4},\mathcal{S}^{dh}_{3}$}
{The mixture indices associated with each region of the micro-structures $M_{\mathrm{micro},i,j}$}
\RealEnr
{FRACT\blank{7}}{$\mathcal{S}^{dh}_{1},\mathcal{S}^{dh}_{3}$}{}
{The volumetric concentration of each micro-structure $\rho_{\mathrm{micro},i,j}$}
\end{DescriptionEnregistrement}
The dimensioning parameters for this data structure, which are stored in the state vector
$\mathcal{S}^{bh}$, represent:
\begin{itemize}
\item The number of different kinds of macro-structures $\mathcal{S}^{dh}_{1}$
\item $1$ plus the maximum number of annular sub-regions in any micro-structure
$\mathcal{S}^{dh}_{2}$
\item The number of composite mixtures to be included the macro-geometry $\mathcal{S}^{dh}_{3}$
\item The maximum number of annular sub-regions in the micro-structure
$\mathcal{S}^{dh}_{4}=(\mathcal{S}^{dh}_{2}-1)\times \mathcal{S}^{dh}_{1}$
\item The type of micro-structure $\mathcal{S}^{dh}_{5}$
\noindent where
\begin{displaymath}
\mathcal{S}^{dh}_{5} = \left\{
\begin{array}{rl}
3 & \textrm{Tubular micro-structure} \\
4 & \textrm{Spherical micro-structure} \\
\end{array} \right.
\end{displaymath}
\end{itemize}
\clearpage
|