summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDexcell.tex
blob: c3e28a468fc89200676f67cbeb623ac254da3657 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
\subsection{The \moc{excelt} dependent records on a
\dir{tracking} directory}\label{sect:excelltrackingdir}

When the \moc{EXCELT:} modules is used ($\mathsf{CDOOR}$={\tt 'EXCELL'}), the following elements in the vector
$\mathcal{S}^{t}_{i}$ will also be defined.

\begin{itemize}
\item $\mathcal{S}^{t}_{6}$ is the number of Legendre orders used for the flux expansions, where
\begin{displaymath}
\mathcal{S}^{t}_{6} = \left\{
\begin{array}{rl}
 1 & \textrm{isotropic} \\
 2 & \textrm{linearly anisotropic.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{7}$ is the specific EXCELL tracking procedure considered where
\begin{displaymath}
\mathcal{S}^{t}_{7} = \left\{
\begin{array}{rl}
 1 & \textrm{Cartesian 2D/3D assembly using {\tt EXCELT:}} \\
 2 & \textrm{hexagonal 2D/3D assembly using {\tt EXCELT:}} \\
 3 & \textrm{2D cluster geometry using {\tt EXCELT:}} \\
 4 & \textrm{2D or 3D geometry using {\tt NXT:} or {\tt SALT:}} \\
 5 & \textrm{2D multicell surfacic approximation.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{8}$ is the track normalization flag where
\begin{displaymath}
\mathcal{S}^{t}_{8} = \left\{
\begin{array}{rl}
 -1 & \textrm{direction dependent track normalization to exact volumes;} \\
 0 & \textrm{global track normalization to exact volumes;} \\
 1 & \textrm{no normalization.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{9}$ is the tracking type where
\begin{displaymath}
\mathcal{S}^{t}_{9} = \left\{
\begin{array}{rl}
 0 & \textrm{means that a standard tracking procedure was considered (\moc{TISO});} \\
 1 & \textrm{means that a cyclic tracking procedure was considered  (\moc{TSPC}).} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{10}$ is the type of boundary conditions where
\begin{displaymath}
\mathcal{S}^{t}_{10} = \left\{
\begin{array}{rl}
 0 & \textrm{means that isotropic (white) boundary conditions will be considered (\moc{PISO});} \\
 1 & \textrm{means that mirror-like (specular) boundary conditions will be considered (\moc{PSPC}).} \\
\end{array} \right.
\end{displaymath}

Note that mirror-like boundary conditions ($\mathcal{S}^{t}_{10} = 1$) can be used only if
a cyclic tracking procedure was considered ($\mathcal{S}^{t}_{9} = 1$). 

\item $\mathcal{S}^{t}_{11}=N_\Omega$ is the order of the azimuthal (2-D) or solid (3-D) angular quadrature. For 2-D geometry, the order 
of the azimuthal quadrature represents:
\begin{itemize}
\item the number of equal sectors (trapezoidal quadrature) in the $[0,\pi]$ range when the {\tt EXCELT:} module is
used for Cartesian assemblies; 
\item the number of equal sectors (trapezoidal quadrature) in the $[0,2\pi/3]$ range when the {\tt EXCELT:} module 
is used for hexagonal geometries;
\item the number of equal sectors (trapezoidal quadrature) in the $[0,\max (\mathcal{S}^{t}_{12},2) \, \pi]$ range when the {\tt EXCELT:}
module is used for cluster geometries; 
\item the number of trapezoidal sectors in the $[0,\pi/2]$ range when the {\tt NXT:} module is used. 
\end{itemize}

For 3-D geometry, the order of the solid angle quadrature is: 
\begin{itemize}
\item the order $n$ of the $EQ_n$ quadrature in a quadrant ($0\le \varphi\le \pi/2$ and $0\le \theta \le \pi/2$) when the
{\tt EXCELT:} module is used for Cartesian assemblies for $N_{\rm dir}=n(n+2)/8$ direction in each 
quadrant; 
\item the number of equal sectors (trapezoidal quadrature) in the $[0,2\pi/3]$ range when the {\tt EXCELT:} module 
is used for hexagonal geometries; 
\item not used for the {\tt EXCELT:} module in cluster geometries; 
\item the order $n$ of the $EQ_n$ , $LC_n$ or $LT_n$ quadrature in a quadrant with $0\le \varphi\le \pi/2$ and $0\le \theta \le \pi/2$.
When the {\tt NXT:} modules is used, the number $N_{\rm dir}$ of directions for the azimuthal (2-D) or solid (3-D) angle quadrature
results in $N_{\rm dir}=n(n+2)/8$ directions for the $EQ_n$ quadrature, 
$N_{\rm dir}=3n(n+2)/8$ for the $LC_n$ quadrature and $N_{\rm dir}=3n^2/2$ for the $LT_n$ quadrature.
\end{itemize}

\item $\mathcal{S}^{t}_{12}$ is the angular symmetry factor;

\item $\mathcal{S}^{t}_{13}$ is the polar quadrature type:
\begin{displaymath}
\mathcal{S}^{t}_{13} = \left\{
\begin{array}{rl}
 0 & \textrm{Gauss-Legendre} \\
 1 & \textrm{CACTUS type 1} \\
 2 & \textrm{CACTUS type 2} \\
 3 & \textrm{McDaniel} \\
 4 & \textrm{McDaniel with $P_1$ constraint} \\
 5 & \textrm{Gauss optimized.}
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{14}$ is the order of the polar quadrature.

\item $\mathcal{S}^{t}_{15}$ is the azimuthal (2-D) or solid (3-D) angle quadrature type where
\begin{displaymath}
\mathcal{S}^{t}_{15} = \left\{
\begin{array}{rl}
 1 & \textrm{for a $EQ_n$ (3-D) or trapezoidal (2-D) quadrature;} \\
 2 & \textrm{for a Gauss quadrature (2-D hexagonal geometries);} \\
 3 & \textrm{for a median angle quadrature;} \\
 4 & \textrm{for a $LC_n$ 3-D quadrature;} \\
 5 & \textrm{for a $LT_n$ 3-D quadrature;} \\
 6 & \textrm{for a $\mu_1$--optimized level-symmetric 3-D quadrature;} \\
 7 & \textrm{for a quadrupole range (QR) 3-D quadrature.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{16}$ is the number of geometric dimensions (1, 2 or 3).

\item $\mathcal{S}^{t}_{17}$ is the number of tracking points on a line.

\item $\mathcal{S}^{t}_{18}$ is the maximum length of a track.

\item $\mathcal{S}^{t}_{19}$ is the total number of tracks generated.

\item $\mathcal{S}^{t}_{20}$ is the total number of track directions processed.

\item $\mathcal{S}^{t}_{21}$ is the line format option for \moc{TLM:} module, where
\begin{displaymath}
\mathcal{S}^{t}_{21} = \left\{
\begin{array}{rl}
 0 & \textrm{short format} \\
 1 & \textrm{complete format.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{22}$ is the vectorization option for computing collision probability matrices where
\begin{displaymath}
\mathcal{S}^{t}_{22} = \left\{
\begin{array}{rl}
 0 & \textrm{scalar algorithm. The tracking is readed for each energy group.} \\
 1 & \textrm{vectorial algorithm. The tracking is readed once and the collision
 probability} \\
   & \textrm{matrices are computed in many energy groups.} \\
 2 & \textrm{vectorial algorithm of type \moc{EXCELL:}. The tracking is computed in \moc{DOORVP}} \\
   & \textrm{and the collision probability matrices are computed in many energy groups.} \\
 3 & \textrm{vectorial algorithm of type \moc{NXT:}. The tracking is computed in \moc{DOORVP}} \\
   & \textrm{and the collision probability matrices are computed in many energy groups.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{23}$ is the tracking flag, where
\begin{displaymath}
\mathcal{S}^{t}_{23} = \left\{
\begin{array}{rl}
 -1 & \textrm{the LCM object information is used for Monte-Carlo calculations. No} \\
   & \textrm{tracking file produced.} \\
 0 & \textrm{this option de-activates the tracking file production if \moc{TISO} or \moc{TSPC} are} \\
   & \textrm{specified.} \\
 1 & \textrm{this option produces the tracking file.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{24}$ is the multicell surfacic flag, where
\begin{displaymath}
\mathcal{S}^{t}_{24} = \left\{
\begin{array}{rl}
 0 & \textrm{do not use the multicell surfacic approximation.} \\
 {\tt NMACRO} & \textrm{number of macro geometries for the multicell surfacic approximation.} \\
\end{array} \right.
\end{displaymath}

\item $\mathcal{S}^{t}_{25}$ is the number of normal planes considered in NXT tracking.

\item $\mathcal{S}^{t}_{26}$ is the {\tt MERGMIX} activation flag (0/1: off/on).

\item $\mathcal{S}^{t}_{27}$ is the number of tracks assigned to each OpenMP core.

\item $\mathcal{S}^{t}_{28}$ is the number of interface currents for the multicell surfacic approximation. These interface currents are additional unknowns
components if a flux-current iteration solution is used.

\item $\mathcal{S}^{t}_{29}$ is the sum $\sum_{i=1}^{\mathcal{S}^{t}_{24}} N_i$ where $N_i$ is the number of perimeter elements after unfolding in macro
geometry $i$.

\item $\mathcal{S}^{t}_{39}$ is the prismatic tracking activation flag along $z$ axis for 3D geometry (0/3: off/on-$z$ axis).

\end{itemize}

The following records will also be present on the main level of a \dir{tracking} directory.

\begin{DescriptionEnregistrement}{The \moc{EXCELT:} records in \dir{tracking}}{8.0cm}
\label{tabl:main-structure}
\RealEnr
  {EXCELTRACKOP}{$40$}{}
  {array ${\cal R}_i$ containing additional EXCELL or NXT tracking parameters.} 
\IntEnr
  {ICODE\blank{7}}{$6$}
  {array ${\cal I}_{\beta,k}$ containing the surface albedo index (geometric surface albedo
  $\beta_{{\rm g},k}$ are used if ${\cal I}_{\beta,k}< 0$ while physical 
  surface albedo $\beta_{{\rm p},k}$ are used if ${\cal I}_{\beta,k}> 0$).} 
\RealEnr
  {ALBEDO\blank{6}}{$6$}{}
  {array $\beta_{{\rm g},k}$ containing the geometric surface albedo (used only if ${\cal I}_{\beta,k}\ge 0$).}
\OptDirEnr
  {EXCELL\blank{6}}{$\mathcal{S}^{t}_{7}< 4$}
  {directory containing additional {\tt EXCELT:}  records for the cases where $\mathcal{S}^{t}_{7}=1$ or $\mathcal{S}^{t}_{7}=3$.}
\OptDirEnr
  {NXTRecords\blank{2}}{$\mathcal{S}^{t}_{7}=4$}
  {directory containing additional {\tt NXT:} records.}
\OptDirEnr
  {PROJECTION\blank{2}}{$\mathcal{S}^{t}_{39}>0$}
  {directory containing the analysis of the projection of a 3D prismatic geometry.}
\end{DescriptionEnregistrement}

The record ${\cal R}_i$ contains the following information:
\begin{itemize}
\item ${\cal R}_1$ is the maximum error allowed on the exponential function. 
\item ${\cal R}_2$ is the user requested tracking density in cm$^{-1}$ and in cm$^{-2}$ respectively for 2D and 3D calculations. 
\item ${\cal R}_3$ is the maximum distance in cm between an integration line and a surface. 
\item ${\cal R}_4$ is the computed tracking density in cm$^{-1}$ and in cm$^{-2}$ respectively for 2D and 3D calculations (used 
only if $\mathcal{S}^{t}_{7}=4$).
\item ${\cal R}_5$ is the computed line spacing in cm (used only if $\mathcal{S}^{t}_{7}=4$). 
\item ${\cal R}_6$ is the weight of the spatial quadrature (used only if $\mathcal{S}^{t}_{7}=4$). 
\item ${\cal R}_7$ is the minimal radius of the circle (2-D) or sphere (3-D) containing the geometry (used only if $\mathcal{S}^{t}_{7}=4$). 
\item ${\cal R}_8$ is the $x$ position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used 
only if $\mathcal{S}^{t}_{7}=4$). 
\item ${\cal R}_9$ is the $y$ position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used 
only if $\mathcal{S}^{t}_{7}=4$). 
\item ${\cal R}_{10}$ is the $z$ position of the center of the minimal circle (2-D) or sphere (3-D) containing the geometry (used 
only if $\mathcal{S}^{t}_{7}=4$). 
\item ${\cal R}_{11}$ is the spatial cutoff factor for tracking.
\item ${\cal R}_{12}$ is the stopping criterion for flux-current iterations of the multicell surfacic approximation.
\item ${\cal R}_{40}$ user requested tracking density in cm$^{-1}$ for inline contruction of 3D tracks when a prismatic tracking is considered (only used if $\mathcal{S}^{t}_{39}>0$).
\end{itemize}

Additional records are defined in the structure of Table~\ref{tabl:main-structure} in case where the multicell surfacic
approximation is used (if $\mathcal{S}^{t}_{7}=5$):

\begin{DescriptionEnregistrement}{The additional multicell surfacic records in \dir{tracking}}{8.0cm}
\DirlEnr
  {MACRO-TRACK\blank{1}}{$\mathcal{S}^{t}_{24}$}
  {List of directories. Each component of this list contains the the tracking information for a macro geometry.
  Each directory of the list follows the specification presented in Table~\ref{tabl:main-structure} for a case with
  a unique macro geometry ($\mathcal{S}^{t}_{7}=4$ and $\mathcal{S}^{t}_{24}=1$).}
\IntEnr
  {NMC\_NODE\blank{4}}{$\mathcal{S}^{t}_{24}+1$}
  {Offset of the first region in each macro geometry}
\IntEnr
  {NMC\_SURF\blank{4}}{$\mathcal{S}^{t}_{24}+1$}
  {Offset of the first boundary surface in each macro geometry}
\IntEnr
  {IFR\blank{9}}{$\mathcal{S}^{t}_{29}$}
  {Index numbers of incoming currents}
\RealEnr
  {ALB\blank{9}}{$\mathcal{S}^{t}_{29}$}{}
  {Albedo or transmission factors corresponding to incoming currents}
\IntEnr
  {MIX\blank{9}}{$\mathcal{S}^{t}_{29}$}
  {Index numbers of outgoing currents}
\RealEnr
  {DVX\blank{9}}{$\mathcal{S}^{t}_{29}$}{}
  {Weights corresponding to outgoing currents}
\RealEnr
  {SUR\blank{9}}{$\mathcal{S}^{t}_{29}$}{cm}
  {Interface surfaces corresponding to incoming currents}
\IntEnr
  {MERGE\_MACRO\blank{1}}{$\mathcal{S}^{t}_{1}$}
  {Merge index assigned to each node in the global surfacic geometry}
\end{DescriptionEnregistrement}

The \namedir{NXTRecords} directory contains the information required to track the geometry using the \moc{NXT:} module module once it has been analyzed. The contents of this directory is presented in Table~\ref{tabl:NXTRecords}.

\begin{DescriptionEnregistrement}{Global geometry records in \namedir{NXTRecords}}{8.0cm}\label{tabl:NXTRecords}
\IntEnr
  {G00000001DIM}{$40$}
  {array $N^{\text{GG}}_{i}$ containing the dimensioning information required to rebuilt the assembly} 
\IntEnr
  {G00000001CUF}{$2,N^{\text{GG}}_{5}$}
  {array $D^{\text{GG}}_{i,j}$ containing the assembly description of the geometry in terms of cells and rotations. The first element ($i=1$) identifies the cell number while the second element identifies the cell rotation} 
\IntEnr
  {G00000001CIS}{$4,N^{\text{GG}}_{4}$}
  {array $S^{\text{GG}}_{i,j}$ containing the cell intrinsic symmetry properties. A value of $1$ indicates that a center cell reflexion symmetry is present while a value of $0$ indicates that the symmetry is not considered (see below for a more complete description of this array)} 
\IntEnr
  {G00000001CFE}{$0:8,N^{\text{GG}}_{4}$}
  {array $F^{\text{GG}}_{i,j}$ containing the assembly external surface identification index (see below for a more complete description of this array)}
\DbleEnr
  {G00000001SMX}{$0:N^{\text{GG}}_{13}$}{cm}
  {array $x^{\text{GG}}$ containing the $x$-directed mesh for the cell assembly in a Cartesian or Cylindrical geometry and the $x$ position of the cell center for an hexagonal assembly (see below for more explanations)}
\DbleEnr
  {G00000001SMY}{$0:N^{\text{GG}}_{14}$}{cm}
  {array $y^{\text{GG}}$ containing the $y$-directed mesh for the cell assembly in a Cartesian or Cylindrical geometry and the $y$ position of the cell center for an hexagonal assembly (see below for more explanations)}
\OptDbleEnr
  {G00000001SMZ}{$0:N^{\text{GG}}_{15}$}{$N^{\text{GG}}_{1}=3$}{cm}
  {array $z^{\text{GG}}$ containing the $z$-directed mesh for the cell assembly (see below for more explanations)}
\OptDbleEnr
  {G00000001SMR}{$0:1$}{$N^{\text{GG}}_{2}=1$}{cm}
  {the radius $r^{\text{GG}}$ of the outer assembly boundary (see below for more explanations)}
\IntEnr
  {KEYMRG\blank{6}}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}
  {array $\text{MRG}_{i}$ containing the merged surface and region number associated with each individual surfaces and regions in this geometry}
\IntEnr
  {MATALB\blank{6}}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}
  {array containing the albedo number associated with each surface and the physical mixture number associated with each region in this geometry}
\IntEnr
  {HOMMATALB\blank{3}}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}
  {array containing the albedo number associated with each surface and the virtual (homogenization) mixture number associated with each region in this geometry}
\DbleEnr
  {SAreaRvolume}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}{}
  {array containing the area ($S_{\alpha}$ in cm for 2-D and cm$^{2}$ for 3-D problems) and volume ($V_{i}$ cm$^{2}$ for 2-D and
cm$^{3}$ for 3-D problems) associated with each surface and region in this geometry}
\end{DescriptionEnregistrement}

The dimensioning vector for the global geometry contains the following information:
\begin{itemize}
\item $N^{\text{GG}}_{1}$ number of dimensions for the problem.
\item $N^{\text{GG}}_{2}$ type of boundary, defined as follows:
  \begin{itemize}
  \item $i=0$: Cartesian geometry;
  \item $i=1$: cylindrical geometry;
  \item $i=2$: isocel geometry with specular reflection;
  \item $i=3$: hexagonal geometry with translation;
  \item $i=4$: isocel geometry with RA60 rotation and translation;
  \item $i=5$: lozenge geometry with R120 rotation and translation.
  \end{itemize}
\item $N^{\text{GG}}_{3}$ first direction to process in the analysis. For cylinder, this is the direction of the first axis of the plane normal to the cylinder axis. For Cartesian and hexagonal geometries a value of 1 ($x$-axis) is selected by default. 
\item $N^{\text{GG}}_{4}$ number of cells in the original geometry (before unfolding).
\item $N^{\text{GG}}_{5}$ number of cells in the geometry after the original geometry is unfolded according to the symmetries.
\item $N^{\text{GG}}_{6}$ diagonal symmetry flag. A value of $0$ indicates that this symmetry is not used. A value of $-1$ indicates that the symmetry is used for the $x_{-}=y_{+}$ plane and a value of $1$ that the symmetry is used for the $x_{+}=y_{}$ plane.
\item $N^{\text{GG}}_{7}$ flag to identify symmetries with respect to the $x$-axis ($x_{-}$ or $x_{+}$). A value of $0$ indicates that no symmetry is present, $N^{\text{GG}}_{7}=\pm 1$ is for a \moc{SYME} symmetry at the $x_{\pm}$ plane, $N^{\text{GG}}_{7}=\pm 2$ represents a \moc{SSYM} symmetry at the $x_{\pm}$ plane and $N^{\text{GG}}_{7}= 3$ implies a translation symmetry is the $x$ direction ($x_{-}=x_{+}$).
\item $N^{\text{GG}}_{8}$ flag to identify symmetries with respect to the $y$-axis ($y_{-}$ or $y_{+}$). A value of $0$ indicates that no symmetry is present, $N^{\text{GG}}_{7}=\pm 1$ is for a \moc{SYME} symmetry at the $y_{\pm}$ plane, $N^{\text{GG}}_{7}=\pm 2$ represents a \moc{SSYM} symmetry at the $y_{\pm}$ plane and $N^{\text{GG}}_{7}= 3$ implies a translation symmetry is the $y$ direction ($y_{-}=y_{+}$).
\item $N^{\text{GG}}_{9}$ flag to identify symmetries with respect to the $z$-axis ($z_{-}$ or $z_{+}$). A value of $0$ indicates that no symmetry is present, $N^{\text{GG}}_{7}=\pm 1$ is for a \moc{SYME} symmetry at the $z_{\pm}$ plane, $N^{\text{GG}}_{7}=\pm 2$ represents a \moc{SSYM} symmetry at the $z_{\pm}$ plane and $N^{\text{GG}}_{7}= 3$ implies a translation symmetry is the $z$ direction ($z_{-}=z_{+}$).
\item $N^{\text{GG}}_{10}$ number of $x$ mesh subdivisions or hexagons in the original geometry.
\item $N^{\text{GG}}_{11}$ number of $y$ mesh subdivisions or hexagons in the original geometry.
\item $N^{\text{GG}}_{12}$ number of $z$ mesh subdivisions in the original geometry.
\item $N^{\text{GG}}_{13}$ number of $x$ mesh subdivisions or hexagons in the unfolded geometry.
\item $N^{\text{GG}}_{14}$ number of $y$ mesh subdivisions or hexagons in the unfolded geometry.
\item $N^{\text{GG}}_{15}$ number of $z$ mesh subdivisions in the unfolded geometry.
\item $N^{\text{GG}}_{16}$ maximum number cells required to represent this geometry.
\item $N^{\text{GG}}_{17}$ maximum number of region for this geometry.
\item $N^{\text{GG}}_{18}$ total number of clusters in this geometry.
\item $N^{\text{GG}}_{19}$ maximum number of pins in this geometry.
\item $N^{\text{GG}}_{20}$ maximum dimensions of any mesh array for a cell in this geometry.
\item $N^{\text{GG}}_{21}$ maximum dimensions of any mesh array for a pin in this geometry. 
\item $N^{\text{GG}}_{22}$ number of external surfaces for this geometry.
\item $N^{\text{GG}}_{23}$ number of regions for this geometry.
\item $N^{\text{GG}}_{24}$ maximum number of external surfaces in a sub-geometry included in this geometry.
\item $N^{\text{GG}}_{25}$ maximum number of regions in a sub-geometry included in this geometry.
\item $N^{\text{GG}}_{26}$ MERGE flag defined as follows:
  \begin{itemize}
  \item $i=0$: no merge;
  \item $i=1$: {\tt MERGE MIX} applied to regions.
  \end{itemize}
\end{itemize}

The indexing of array $S^{\text{GG}}_{i,j}$ for the axis of symmetry is as follows
\begin{enumerate}
 \item Cartesian  assemblies: 
  \begin{itemize}
  \item $i=1$ refers to a reflexion of the geometry on a plane normal the $x$-axis; 
  \item $i=2$ refers to a reflexion of the geometry on a plane normal the $y$-axis; 
  \item $i=3$ refers to a reflexion of the geometry on the plane $x=y$; 
  \item $i=4$ refers to a reflexion of the geometry on a plane normal the $z$-axis. 
  \end{itemize}
\item Hexagonal assemblies (symmetries not yet programmed).
  \begin{itemize}
  \item $i=1$ refers to a reflexion of the geometry on a plane normal the $u$-axis; 
  \item $i=2$ refers to a reflexion of the geometry on a plane normal the $v$-axis; 
  \item $i=3$ refers to a reflexion of the geometry on the plane $w$; 
  \item $i=4$ refers to a reflexion of the geometry on a plane normal the $z$ axis. 
  \end{itemize}
\end{enumerate}

\begin{figure}[htbp]  
\begin{center} 
\parbox{6cm}{\epsfxsize=6cm \epsffile{HexAssmbR.eps}}\hspace{1.0cm} \parbox{6cm}{\epsfxsize=6cm \epsffile{HexFaces.eps}}
\caption{Example of an assembly of hexagons (left) and external faces identification for an hexagon}\label{fig:HexAssmbR}   
\end{center}  
\end{figure}

The indexing of array $F^{\text{GG}}_{i,j}$ for external surface identification is as follows. First $F^{\text{GG}}_{0,j}$ represents the number of times the cell appears in the geometry after it has been unfolded. For $i>0$, $F^{\text{GG}}_{i,j}$ can take the following values
$$
F^{\text{GG}}_{i,j} =\cases{ 1 & \text{surface associated with direction $i$ of cell $j$ is an external boundary of the assembly}\cr
                                   0 & \text{surface associated with direction $i$ of cell $j$ is not an external boundary of the assembly}\cr
                      }
$$
with the following planes associated with different values of $i$:
\begin{enumerate}
 \item Cartesian assemblies: 
  \begin{itemize}
  \item $i=1$ surfaces on the $x_{-}$ plane for cell $j$; 
  \item $i=2$ surfaces on the $x_{+}$ plane for cell $j$;
  \item $i=3$ surfaces on the $y_{-}$ plane for cell $j$;
  \item $i=4$ surfaces on the $y_{+}$ plane for cell $j$;
  \item $i=5$ surfaces on the $z_{-}$ plane for cell $j$; 
  \item $i=6$ surfaces on the $z_{+}$ plane for cell $j$.
  \end{itemize}
%\item Cylindrical assemblies (not yet programmed).
%  \begin{itemize}
%  \item $i=5$ identify the surfaces on the $z_{-}$ plane for cell $j$; 
%  \item $i=6$ identify the surfaces on the $z_{+}$ plane for cell $j$.
%  \item $i=8$ identify the surfaces on the $r_{-}$ plane for cell $j$; 
%  \end{itemize}
\item Hexagonal assemblies (see \Fig{HexAssmbR}):
  \begin{itemize}
  \item $i=1$ surfaces on the $u_{-}$ plane for cell $j$; 
  \item $i=2$ surfaces on the $u_{+}$ plane for cell $j$;
  \item $i=3$ surfaces on the $v_{-}$ plane for cell $j$;
  \item $i=4$ surfaces on the $v_{+}$ plane for cell $j$;
  \item $i=5$ surfaces on the $z_{-}$ plane for cell $j$; 
  \item $i=6$ surfaces on the $z_{+}$ plane for cell $j$;
  \item $i=7$ surfaces on the $w_{-}$ plane for cell $j$;
  \item $i=8$ surfaces on the $w_{+}$ plane for cell $j$.
  \end{itemize}
\end{enumerate}

The arrays $x^{\text{GG}}$, $y^{\text{GG}}$, $z^{\text{GG}}$ and $r^{\text{GG}}$ contain the following information:
\begin{enumerate}
\item Cartesian assemblies: 
  \begin{itemize}
  \item $x^{\text{GG}}_{i-1}$ and $x^{\text{GG}}_{i}$ are the lower and upper $x$ limits of mesh element $i$ ($i=1,n^{x}$);
  \item $y^{\text{GG}}_{j-1}$ and $y^{\text{GG}}_{j}$ are the lower and upper $y$ limits of mesh element $j$ ($j=1,n^{y}$);
  \item $z^{\text{GG}}_{k-1}$ and $z^{\text{GG}}_{k}$ are the lower and upper $z$ limits of mesh element $k$ ($k=1,n^{z}$).
  \end{itemize}
%\item Cylindrical assemblies: not yet programmed.
\item Hexagonal assemblies (see \Fig{HexAssmbR}): 
  \begin{itemize}
  \item $x^{\text{GG}}_{0}=h$ is the width of one face of the hexagon and $x^{\text{GG}}_{i}$ is the position in $x$ of the center of cell $i$ in the assembly;
  \item $y^{\text{GG}}_{0}=h$ is the width of one face of the hexagon and $y^{\text{GG}}_{j}$ is the position in $y$ of the center of cell $j$ in the assembly;
  \item $z^{\text{GG}}_{k-1}$ and $z^{\text{GG}}_{k}$ are the lower and upper $z$ limits of mesh element $k$ ($k=1,n^{z}$).
  \end{itemize}
\end{enumerate}

As we noted above, the global geometry is always an assembly containing cells. For each cell $i$ in this assembly, several records will be generated in the \namedir{NXTRecords} directory. These records are identified using a FORTRAN \verb|CHARACTER*12| variable as follows 
\begin{quote}
\begin{verbatim}
INTEGER      I
CHARACTER*12 NAMREC
CHARACTER*3  NREC
WRITE(NAMREC,'(A1,I8.8,A3)') 'C',I,NREC
\end{verbatim}
\end{quote}
where the variable \verb|NREC| can take the following values:
\begin{itemize}
\item DIM for dimensioning information;
\item SMR for the radial mesh description;
\item SMX for the $x$-directed mesh description;
\item SMY for the $y$-directed mesh description;
\item SMZ for the $z$-directed mesh description;
\item MIX for physical mixture description;
\item HOM for virtual mixture description;
\item VSE for areas and volumes results;
\item VSI for local surfaces and regions identification;
\item RID for final region numbering;
\item SID for final surface numbering
\item PNT for pin contents description;
\item PIN for pins location.
\end{itemize}

In Table~\ref{tabl:NXTCell}, a description of the  additional \namedir{NXTRecords} records associated with cell $i=1$ can be found.

\begin{DescriptionEnregistrement}{Cell $i=1$ records in \namedir{NXTRecords}}{8.0cm}\label{tabl:NXTCell}
\IntEnr
  {C00000001DIM}{$40$}
  {array $N^{\text{GC}}_{j}$ containing the dimensioning information required to rebuilt the cell} 
\DbleEnr
  {C00000001SMR}{$N^{\text{GC}}_{2}$}{cm}
  {array $r^{\text{GC}}_{j}$ containing the cell radial mesh description}
\DbleEnr
  {C00000001SMX}{$N^{\text{GC}}_{3}$}{cm}
  {array $x^{\text{GC}}_{j}$ containing the cell $x$-directed mesh description}
\DbleEnr
  {C00000001SMY}{$N^{\text{GC}}_{4}$}{cm}
  {array $y^{\text{GC}}_{j}$ containing the cell $y$-directed mesh description}
\DbleEnr
  {C00000001SMZ}{$N^{\text{GC}}_{5}$}{cm}
  {array $z^{\text{GC}}_{j}$ containing the cell $z$-directed mesh description}
\IntEnr
  {C00000001MIX}{$N^{\text{GC}}_{6}$}
  {array $M^{\text{GC}}_{j}$ containing the cell physical mixture for each region}
\IntEnr
  {C00000001HOM}{$N^{\text{GC}}_{6}$}
  {array $H^{\text{GC}}_{j}$ containing the cell virtual mixture for each region}
\DbleEnr
  {C00000001VSE}{$-N^{\text{GC}}_{9}:N^{\text{GC}}_{8}$}{}
  {array $\text{SV}^{\text{GC}}_{j}$ containing surface area $j$ ($\text{SV}^{\text{GC}}_{-j}=S^{\text{GC}}_{j}$ in cm for 2-D and cm$^{2}$ for 3-D problems) and
regional volumes $j$ ($\text{SV}^{\text{GC}}_{j}=V^{\text{GC}}_{j}$ in cm$^{2}$ for 2-D and cm$^{3}$ for 3-D problems)}
\IntEnr
  {C00000001VSI}{$4,-N^{\text{GC}}_{9}:N^{\text{GC}}_{8}$}
  {array $\text{VSI}^{\text{GC}}_{k,j}$ containing the location of a surface ($j<0$) and a region ($j>0$)}
\IntEnr
  {C00000001RID}{$N^{\text{GC}}_{8}$}
  {index array $\text{RID}^{\text{GC}}_{j}$ associating local and global region numbering}
\IntEnr
  {C00000001SID}{$N^{\text{GC}}_{9}$}
  {index array $\text{SID}^{\text{GC}}_{j,i}$ associating local and global outer surface numbering}
\IntEnr
  {C00000001PNT}{$3,N^{\text{GC}}_{18}$}
  {array $\text{PC}^{\text{GC}}_{k,j}$ containing the cell pin contents}
\DbleEnr
  {C00000001PIN}{$-1:4,N^{\text{GC}}_{18}$}{}
  {array $\text{p}^{\text{GC}}_{k,j}$ containing the location of the pins in cell}
\end{DescriptionEnregistrement}
Note that the record names above are built using the following FORTRAN instructions:
  \begin{quote}
    \verb|WRITE(NAMREC,'(A1,I8.8,A3)') 'C',|$i$\verb|,NAMEXT|
  \end{quote}

The cell dimensioning array $N^{\text{GC}}_{i}$ for cell $i$ contains the following information:
\begin{itemize}
\item $N^{\text{GC}}_{1}$ cell geometry type (see the definition of $\mathcal{S}^{G}_{1}$ in \Sect{geometrydirmain});
\item $N^{\text{GC}}_{2}$ dimensions of the radial mesh array; 
\item $N^{\text{GC}}_{3}$ dimensions of the $x$-directed mesh array;  
\item $N^{\text{GC}}_{4}$ dimensions of the $y$-directed mesh array;  
\item $N^{\text{GC}}_{5}$ dimensions of the $z$-directed mesh array;  
\item $N^{\text{GC}}_{6}$ dimensions of the mixture record;
\item $N^{\text{GC}}_{7}$ geometry level (1 for cell);
\item $N^{\text{GC}}_{8}$ number of regions in the cell before symmetry considerations;
\item $N^{\text{GC}}_{9}$ number of surfaces in the cell before symmetry considerations;
\item $N^{\text{GC}}_{10}$ number of regions in the cell after symmetry considerations;
\item $N^{\text{GC}}_{11}$ number of surfaces in the cell after symmetry considerations;
\item $N^{\text{GC}}_{12}$ first global region number for cell;
\item $N^{\text{GC}}_{13}$ last global region number for cell;
\item $N^{\text{GC}}_{14}$ first global surface number for cell;
\item $N^{\text{GC}}_{15}$ last global surface number for cell;
\item $N^{\text{GC}}_{16}$ number of pin cluster geometries in cell;
\item $N^{\text{GC}}_{17}$ first pin cluster geometry associated with cell;
\item $N^{\text{GC}}_{18}$ total number of pins in cell;
\item $N^{\text{GC}}_{19}$ number of times this cell is used in the global cell.
\end{itemize}
while the remaining elements are not used. 

The array $x^{\text{GC}}_{j}$ contains the following information:
\begin{itemize}
\item $x^{\text{GC}}_{-1}$ contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction $x$. This
center is located at:
$$
x_{c}=\frac{x^{\text{Gc}}_{n^{x}}+x^{\text{GC}}_{0}}{2}
$$
where we have used $n^{x}=N^{\text{GC}}_{3}$.
\item $x^{\text{GC}}_{j-1}$ and $x^{\text{GC}}_{j}$ are the lower and upper $x$ limits of mesh element $j$ ($j=1,n^{x}$).
\end{itemize}
The array $y^{\text{GC}}_{j}$ contains the following information:
\begin{itemize}
\item $y^{\text{GC}}_{-1}$ contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction $y$. This
center is located at:
$$
y_{c}=\frac{y^{\text{GC}}_{n^{y}}+y^{\text{GC}}_{0}}{2}
$$
where we have used $n^{y}=N^{\text{GC}}_{4}$.
\item $y^{\text{GC}}_{j-1}$ and $y^{\text{GC}}_{j}$ are the lower and upper $y$ limits of mesh element $j$ ($j=1,n^{y}$).
\end{itemize}
The array $z^{\text{GC}}_{j}$ contains the following information:
\begin{itemize}
\item $z^{\text{GC}}_{-1}$ contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction $z$. This
center is located at:
$$
z_{c}=\frac{z^{\text{GC}}_{n^{z}}+z^{\text{GC}}_{0}}{2}
$$
where we have used $n^{z}=N^{\text{GC}}_{5}$.
\item $z^{\text{GC}}_{j-1}$ and $z^{\text{GC}}_{j}$ are the lower and upper $z$ limits of mesh element $j$ ($j=1,n^{z}$).
\end{itemize}
  The array $r^{\text{GC}}_{j}$ contains the following information:
\begin{itemize}
\item $r^{\text{GC}}_{-1}=r^{\text{GC}}_{0}=0$. 
\item $r^{\text{GC}}_{j-1}\le r\le r^{\text{GC}}_{j}$ describes the position in $r$ of mesh element $j$ ($j=1,N^{\text{GC}}_{2}$). 
\end{itemize}
The array $p^{\text{GC}}_{j}$ contains the following information:
\begin{itemize}
\item $p^{\text{GC}}_{-1}$ is the angular position of $z$-, $x$- or $y$-directed pin with respect to the $x$, $y$ or $z$ axis. 
\item $p^{\text{GC}}_{0}$ is the radial position of $z$-, $x$- or $y$-directed pin with respect to the $x-y$, $y-z$ or $z-x$ center of the cell where the pin is located. 
\item $p^{\text{GC}}_{1}$ is the height of a $x$-directed pin.
\item $p^{\text{GC}}_{2}$ is the height of a $y$-directed pin.
\item $p^{\text{GC}}_{3}$ is the height of a $z$-directed pin.
\item $p^{\text{GC}}_{4}$ is the outer radius of the pin.
\end{itemize}

In Table~\ref{tabl:NXTCluster}, a description of the additional \namedir{NXTRecords} records associated with pin $i=1$ can be found. These records are identified using a procedure similar to that used for cell records, namely
\begin{quote}
\begin{verbatim}
INTEGER      I
CHARACTER*12 NAMREC
CHARACTER*3  NREC
WRITE(NAMREC,'(A1,I8.8,A3)') 'P',I,NREC
\end{verbatim}
\end{quote}
where the variable \verb|NREC| can take the same values as for cell records, except for \moc{NREC}=\moc{PNT} and \moc{NREC}=\moc{PIN} which are now forbidden.

\begin{DescriptionEnregistrement}{Pin $i=1$ records in \namedir{NXTRecords}}{8.0cm}\label{tabl:NXTCluster}
\IntEnr
  {P00000001DIM}{$40$}
  {array $N^{\text{GP}}_{j}$ containing the dimensioning information required to rebuilt the pin} 
\DbleEnr
  {P00000001SMR}{$N^{\text{GP}}_{2}$}{cm}
  {array $r^{\text{GP}}_{j}$ containing the pin radial mesh description}
\DbleEnr
  {P00000001SMX}{$N^{\text{GP}}_{3}$}{cm}
  {array $x^{\text{GP}}_{j}$ containing the pin $x$-directed mesh description}
\DbleEnr
  {P00000001SMY}{$N^{\text{GP}}_{4}$}{cm}
  {array $y^{\text{GP}}_{j}$ containing the pin $y$-directed mesh description}
\DbleEnr
  {P00000001SMZ}{$N^{\text{GP}}_{5}$}{cm}
  {array $z^{\text{GP}}_{j}$ containing the pin $z$-directed mesh description}
\IntEnr
  {P00000001MIX}{$N^{\text{GP}}_{6}$}
  {array $M^{\text{GP}}_{j}$ containing the pin physical mixture for each region}
\IntEnr
  {P00000001HOM}{$N^{\text{GP}}_{6}$}
  {array $H^{\text{GP}}_{j}$ containing the pin virtual mixture for each region}
\DbleEnr
  {P00000001VSE}{$-N^{\text{GP}}_{9}:N^{\text{GP}}_{8}$}{}
  {array $\text{SV}^{\text{GP}}_{j}$ containing surface area $j$ ($\text{SV}^{\text{GP}}_{-j}=S^{\text{GP}}_{j}$ in cm for 2-D and cm$^{2}$ for 3-D problems) and
regional volumes $j$ ($\text{SV}^{\text{GP}}_{j}=V^{\text{GP}}_{j}$ in cm$^{2}$ for 2-D and cm$^{3}$ for 3-D problems)}
\IntEnr
  {P00000001VSI}{$4,-N^{\text{GP}}_{9}:N^{\text{GP}}_{8}$}
  {array $\text{VSI}^{\text{GP}}_{k,j}$ containing the location of a surface ($j<0$) and a region ($j>0$)}
\IntEnr
  {P00000001RID}{$N^{\text{GP}}_{8}$}
  {index array $\text{RID}^{\text{GP}}_{j}$ associating local and global region numbering}
\IntEnr
  {P00000001SID}{$N^{\text{GP}}_{9}$}
  {index array $\text{SID}^{\text{GP}}_{j,i}$ associating local and global outer surface numbering}
\end{DescriptionEnregistrement}

The pin dimensioning array $N^{\text{GP}}$ contains the following information:
\begin{itemize}
\item $N^{\text{GP}}_{1,}$ pin geometry type (see the definition of $\mathcal{S}^{G}_{1}$ in \Sect{geometrydirmain});
\item $N^{\text{GP}}_{2,}$ dimensions of the radial mesh array;
\item $N^{\text{GP}}_{3,}$ dimensions of the $x$-directed mesh array;  
\item $N^{\text{GP}}_{4,}$ dimensions of the $y$-directed mesh array;  
\item $N^{\text{GP}}_{5,}$ dimensions of the $z$-directed mesh array;  
\item $N^{\text{GP}}_{6,}$ dimensions of the mixture record;
\item $N^{\text{GP}}_{7,}$ geometry level (2 for pins);
\item $N^{\text{GP}}_{8,}$ number of regions in the pin before symmetry considerations;
\item $N^{\text{GP}}_{9,}$ number of surfaces in the pin before symmetry considerations;
\item $N^{\text{GP}}_{10}$ number of regions in the pin after symmetry considerations;
\item $N^{\text{GP}}_{11}$ number of surfaces in the pin after symmetry considerations;
\item $N^{\text{GP}}_{12}$ first global region number for pins in cluster;
\item $N^{\text{GP}}_{13}$ last global region number for pins in cluster;
\item $N^{\text{GP}}_{14}$ first global surface number for pins in cluster;
\item $N^{\text{GP}}_{15}$ last global surface number for pins in cluster;
\item $N^{\text{GP}}_{16}$ first pin cluster geometry for pins in cluster.
\item $N^{\text{GP}}_{17}$ total number of pins in cluster.
\end{itemize}
while the remaining elements are not used. 
The array $x^{\text{GP}}_{j}$ contains the following information:
\begin{itemize}
\item $x^{\text{GP}}_{-1}$ contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction $x$. This
center is located at:
$$
x_{c}=\frac{x^{\text{GP}}_{n^{x}}+x^{\text{GP}}_{0}}{2}
$$
where we have used $n^{x}=N^{\text{GP}}_{3}$.
\item $x^{\text{GP}}_{j-1}$ and $x^{\text{GP}}_{j}$ re the lower and upper $x$ limits of mesh element $j$ ($j=1,n^{x}$).
\end{itemize}
The array $y^{\text{GP}}_{j}$ contains the following information:
\begin{itemize}
\item $y^{\text{GP}}_{-1}$ contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction $y$. This
center is located at:
$$
y_{c}=\frac{y^{\text{GP}}_{n^{y}}+y^{\text{GP}}_{0}}{2}
$$
where we have used $n^{y}=N^{\text{GP}}_{4}$.
\item $y^{\text{GP}}_{j-1}$ and $y^{\text{GP}}_{j}$ are the lower and upper $y$ limits of mesh element $j$ ($j=1,n^{y}$).
\end{itemize}
The array $z^{\text{GP}}_{j}$ contains the following information:
\begin{itemize}
\item $z^{\text{GP}}_{-1}$ contains the displacement of the center of the cylindrical region with respect to the center of the Cartesian mesh in direction $z$. This
center is located at:
$$
z_{c}=\frac{z^{\text{GP}}_{n^{z}}+z^{\text{GP}}_{0}}{2}
$$
where we have used $n^{z}=N^{\text{GP}}_{5}$.
\item $z^{\text{GP}}_{j-1}$ and $z^{\text{GP}}_{j}$ are the lower and upper $z$ limits of mesh element $j$ ($j=1,n^{z}$).
\end{itemize}
  The array $r^{\text{GP}}_{j}$ contains the following information:
\begin{itemize}
\item $r^{\text{GP}}_{-1}=r^{\text{GP}}_{0}=0$. 
\item $r^{\text{GP}}_{j-1}\le r\le r^{\text{GP}}_{j}$ describes the position in $r$ of mesh element $j$ with $j=1,N^{\text{GP}}_{2}$. 
\end{itemize}

Finally the \namedir{NXTRecords} directory also contains records associated with global identification of the surfaces and volumes as illustrated in Table~\ref{tabl:NXTGlobal}.

\begin{DescriptionEnregistrement}{Global geometry records in \namedir{NXTRecords}}{8.0cm}\label{tabl:NXTGlobal}
\DbleEnr
  {TrackingDnsA}{$\mathcal{S}^{t}_{20}$}{cm}
  {array $D_{i}$ containing the spatial spacing for each track direction}
\DbleEnr
  {TrackingDirc}{$N^{\text{GG}}_{1},\mathcal{S}^{t}_{20}$}{}
  {array $\alpha_{j,i}$ containing the director cosine for axis $j$ for each track direction}
\DbleEnr
  {TrackingOrig}{$N^{\text{GG}}_{1},N_{p},\mathcal{S}^{t}_{20}$}{cm}
  {array $L_{k,j,i}$ containing the origin in space ($k=1,N^{\text{GG}}_{1}$) and the direction of the normal plan for each plane $j$ and track direction $i$}
\DbleEnr
  {TrackingWgtD}{$\mathcal{S}^{t}_{20}$}{}
  {array $W_{i}$ containing the integration weight for each track direction}
\IntEnr
  {NumMerge\blank{4}}{$N^{\text{GG}}_{23}$}
  {merging indices used for normalizing the tracks}
\DbleEnr
  {VolMerge\blank{4}}{$N^{\text{GG}}_{23}$}{}
  {volumes used for normalizing the tracks}
\DbleEnr
  {VTNormalize\blank{1}}{$N^{\text{GG}}_{23}$}{}
  {array $R_{i}$ containing the ratio of the analytical and numerical volume for each region}
\OptDbleEnr
  {VTNormalizeD}{$N^{\text{GG}}_{23},\mathcal{S}^{t}_{20}$}{$\mathcal{S}^{t}_{8}=-1$}{}
  {array $R_{i}$ containing the ratio of the analytical and numerical volume for region $i$ for each track direction}
\IntEnr
  {KEYMRG\blank{6}}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}
  {array $\text{MRG}_{i}$ containing the global merging index}
\IntEnr
  {MATALB\blank{6}}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}
  {array containing the albedo number associated with each surface and the physical mixture number associated with each region}
\IntEnr
  {HOMMATALB\blank{3}}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}
  {array containing the albedo number associated with each surface and the virtual mixture number associated with each region}
\DbleEnr
  {SAreaRvolume}{$-N^{\text{GG}}_{22}:N^{\text{GG}}_{23}$}{}
  {array containing the area ($S_{\alpha}$ in cm for 2-D and cm$^{2}$ for 3-D problems) and volumes ($V_{i}$ cm$^{2}$ for 2-D and
cm$^{3}$ for 3-D problems) of each external surface and region in the geometry}
\end{DescriptionEnregistrement}

\clearpage