1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
\section{Contents of a \dir{edition} directory}\label{sect:editiondir}
This directory contains the main editing results. For the purpose of illustration
we will assume that the \moc{EDI:} module is executed using the following data:
\vskip -0.1cm
\begin{verbatim}
EDITING := EDI: FLUX LIBRARY VOLMAT ::
MERG COMP COND 27 69 ALL SAVE ON EDITCELL2G ;
\end{verbatim}
\vskip -0.1cm
\noindent
where \moc{EDITING} is the final \dds{edition} data structure. The data structures \moc{FLUX},
\moc{LIBRARY} and \moc{VOLMAT} are respectively of type \dds{fluxunk}, \dds{microlib} and
\dds{tracking}. Assuming that the initial number of regions in \moc{VOLMAT} is $N$ and the number of
groups in \moc{LIBRARY} is $G=69$, then the final information that will be stored in
the \dds{editing} data structure will represent a two group ($G_{c}=2$) one mixture
$N_{h}$ \dir{microlib}.
\subsection{State vector content for the \dir{edition} data structure}\label{sect:editionstate}
The dimensioning parameters for this data structure, which are stored in the state vector
$\mathcal{S}^{\rm edi}_{i}$, represent:
\begin{itemize}
\item The number of homogeneous mixtures saved $N_{H}=\mathcal{S}^{\rm edi}_{1}$ for the last editing step
\item The number of condensed groups considered $M_{G}=\mathcal{S}^{\rm edi}_{2}$ for the last editing step
\item Editing flag to indicate the presence of 4 factor editing $I_{4f}=\mathcal{S}^{\rm edi}_{3}$ for
the last editing step
\item Editing flag to indicate that the up-scattering contributions have all been transferred to
the diagonal part of the scattering matrix $I_{U}=\mathcal{S}^{\rm edi}_{4}$ for the last editing step
\item The number of mixture activated $N_{A}=\mathcal{S}^{\rm edi}_{5}$ for the last editing step
\item Editing flag to indicate the types of statistics generated by \moc{EDI:}
$I_{S}=\mathcal{S}^{\rm edi}_{6}$ for the last editing step
\item Editing flag to indicate which boundary flux editions are used in \moc{EDI:}. These editions are required for computing
assembly discontinuity factors (ADF) or to perform some types of {\sl superhomog\'en\'eisation} (SPH) calculations.
$I_{\rm adf}=\mathcal{S}^{\rm edi}_{7}$ for the last editing step
\begin{displaymath}
I_{\rm adf} = \left\{
\begin{array}{ll}
0 & \textrm{no boundary flux editions;} \\
1 & \textrm{use boundary currents obtained using the \moc{ALBS} keyword in DRAGON;} \\
2 & \textrm{recover boundary fluxes from informations located in the {\tt REF:ADF} directory;} \\
-2 & \textrm{compute assembly discontinuity factors (ADF) from informations located in} \\
& \textrm{the {\tt REF:ADF} directory;} \\
3 & \textrm{use boundary currents obtained from the current iteration method in Eurydice;} \\
4 & \textrm{recover boundary fluxes or discontinuity factors from the {\tt MACROLIB/ADF}} \\
& \textrm{directory.} \\
\end{array} \right.
\end{displaymath}
\item Editing flag to indicate the type of tracking to be performed on a macro-geometry built by module {\tt EDI:}.
$I_{\rm cell}=\mathcal{S}^{\rm edi}_{8}$ for the last editing step
\begin{displaymath}
I_{\rm cell} = \left\{
\begin{array}{ll}
1 & \textrm{the macro-geometry is tracked by module {\tt SYBILT:} or {\tt EXCELT:};} \\
2 & \textrm{the macro-geometry is tracked by module {\tt NXT:};} \\
3 & \textrm{the macro-geometry is tracked by another module.} \\
\end{array} \right.
\end{displaymath}
\item The number of extracted isotopes in the output microlib $I_{m}=\mathcal{S}^{\rm edi}_{9}$ for the last editing step
\item The print level considered $I_{p}=\mathcal{S}^{\rm edi}_{10}$ for the last editing step
\item Editing flag to indicate the types of cross section saved in \moc{EDI:}
$I_{x}=\mathcal{S}^{\rm edi}_{11}$ for the last editing step
\item The type of weighting used for $P_1$ cross section information $I_{\rm w}=\mathcal{S}^{\rm edi}_{12}$ for the
last editing step ($=0$: flux weighting; $=1$ current weighting)
\item The maximum number of isotopes per mixture $M_{I}=\mathcal{S}^{\rm edi}_{13}$
\item The maximum number of condensed groups in all editing $M_{g}=\mathcal{S}^{\rm edi}_{14}$
\item The maximum number of homogeneous mixtures in all editing $M_{h}=\mathcal{S}^{\rm edi}_{15}$
\item The total number of ISOTXS files generated $M_{F}=\mathcal{S}^{\rm edi}_{16}$
\item The maximum number of regions before homogenization $M_{\rm max}=\mathcal{S}^{\rm edi}_{17}$
\item Editing flag $=1$ for H-factor edition; $=0$ otherwise $I_{H-fac}=\mathcal{S}^{\rm edi}_{18}$
\item Number of delayed neutron precursor groups $N_{\rm del}=\mathcal{S}^{\rm edi}_{19}$
\item Geometry index $L_{\rm geo}=\mathcal{S}^{\rm edi}_{20}$
\begin{displaymath}
L_{\rm geo} = \left\{
\begin{array}{ll}
0 & \textrm{the macro geometry is not available}\\
1 & \textrm{the macro-geometry of the last editing is available}\\
\end{array} \right.
\end{displaymath}
\item Type of weighting for homogenization or/and condensation of cross-section information $I_{\rm adj}=\mathcal{S}^{\rm edi}_{21}$
\begin{displaymath}
I_{\rm adj} = \left\{
\begin{array}{ll}
0 & \textrm{use direct flux;} \\
1 & \textrm{use adjoint flux.} \\
\end{array} \right.
\end{displaymath}
\item Type of current used for $P_1$ weighting if $I_{\rm w}\ne 0$. $I_{\rm curr}=\mathcal{S}^{\rm edi}_{22}$
\begin{displaymath}
I_{\rm curr} = \left\{
\begin{array}{ll}
1 & \textrm{use a current obtained from an heterogeneous leakage model;} \\
2 & \textrm{use the Todorova flux;} \\
4 & \textrm{use spherical harmonics weighting.} \\
\end{array} \right.
\end{displaymath}
\item Number of reactions saved on output microlib $N_{\rm reac}=\mathcal{S}^{\rm edi}_{23}$
\begin{displaymath}
N_{\rm reac} = \left\{
\begin{array}{ll}
0 & \textrm{all available reactions are saved;} \\
>0 & \textrm{only reactions listed in {\tt REF:HVOUT} array are saved.} \\
\end{array} \right.
\end{displaymath}
\item Edition flag for the integrated net currents along each axis $I_{\rm intcur}=\mathcal{S}^{\rm edi}_{24}$
\begin{displaymath}
I_{\rm intcur} = \left\{
\begin{array}{ll}
0 & \textrm{not set;} \\
1 & \textrm{integrated current edition.} \\
\end{array} \right.
\end{displaymath}
\item Type of condensation of the diffusion coefficients $I_{\rm golver}=\mathcal{S}^{\rm edi}_{25}$
\begin{displaymath}
I_{\rm golver} = \left\{
\begin{array}{ll}
0 & \textrm{use weighting of leakage coefficients;} \\
1 & \textrm{use weighting of transport cross sections with the Golfier-Vergain correction} \\
& \textrm{factors.} \\
\end{array} \right.
\end{displaymath}
\end{itemize}
\subsection{The main \dir{edition} directory}\label{sect:editiondirmain}
On its first level, the
following records and sub-directories will be found in the \dir{edition} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{edition}}{7.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_EDIT\blank{6}}).}
\IntEnr
{STATE-VECTOR}{$40$}
{Vector describing the various parameters associated with this data structure $\mathcal{S}^{\rm edi}_{i}$,
as defined in \Sect{editionstate}.}
\CharEnr
{TITLE\blank{7}}{$*72$}
{Title of the last editing performed ($\mathsf{TITLE}$) }
\OptCharEnr
{LAST-EDIT\blank{3}}{$*12$}{$|\mathcal{S}^{\rm edi}_{11}|\ge 2$}
{Name of the last editing sub-directory saved ($\mathsf{LAST}$)}
\CharEnr
{LINK.GEOM\blank{3}}{$*12$}
{Name of the {\sc geometry} on which the last edition was based.}
\IntEnr
{REF:IMERGE\blank{2}}{$\mathcal{S}^{\rm edi}_{17}$}
{Merged region number associated with each of the original region number $M_{r}$}
\RealEnr
{REF:VOLUME\blank{2}}{$\mathcal{S}^{\rm edi}_{17}$}{cm$^{3}$}
{Volume associated with each of the original region number $V_{r}$}
\IntEnr
{REF:MATCOD\blank{2}}{$\mathcal{S}^{\rm edi}_{17}$}
{Mixture number associated with each of the original region number $M_{\rm mix}$}
\IntEnr
{REF:IGCOND\blank{2}}{$\mathcal{S}^{\rm edi}_{2}$}
{Reference group limits associated with the merged groups $C_{g}$}
\OptDirEnr
{REF:ADF\blank{5}}{$\mathcal{S}^{\rm edi}_{7} = 2$}
{ADF--related input data as presented in \Sect{editionADF}.}
\OptCharEnr
{REF:HVOUT\blank{3}}{$(\mathcal{S}^{\rm edi}_{23})*8$}{$\mathcal{S}^{\rm edi}_{23} > 0$}
{Names of the reactions saved in the output microlib.}
\OptCharEnr
{CARISO\blank{6}}{$(\mathcal{S}^{\rm edi}_{9})*12$}{$\mathcal{S}^{\rm edi}_{9}\ge 1$}
{Name of extracted isotopes saved during the last editing ($\mathsf{NAMI}$)}
\OptIntEnr
{IACTI\blank{7}}{$\mathcal{S}^{\rm edi}_{5}$}{$\mathcal{S}^{\rm edi}_{5}\ge 1$}
{Original mixture numbers for which activation data was generated ($A_{m}$)}
\OptDirEnr
{MACRO-GEOM\blank{2}}{$\mathcal{S}^{\rm edi}_{20} = 1$}
{Macro--{\sl geometry} directory. This geometry may be used to complete the {\sc compo} database, for performing
a geometry equivalence ({\sl equigeom}) and/or as the macro--geometry in SPH calculations. This directory follows
the specification presented in \Sect{geometrydirmain}.}
\OptCharEnr
{LINK.MACGEOM}{$*12$}{$\mathcal{S}^{\rm edi}_{20} = 1$}
{Name of the macro--{\sl geometry} on which the last edition was based.}
\DirVar
{\listedir{micdir}}
{Set of sub-directories containing the editing information. This directory follows
the specification presented in \Sect{microlibdirmain}.}
\end{DescriptionEnregistrement}
The set of directory \listedir{micdir} names $\mathsf{EDIDIR}$ will be composed according to the
following rules. In the case where the set of keywords \moc{SAVE}
\moc{ON} are used followed by a directory name as above, the contents of
$\mathsf{EDIDIR}$ will be identical the name of the specified directory
(e.~g., \verb*|EDITCELL2G |). If the \moc{SAVE} option is used without specifying a specific
directory, then the first eight characters of $\mathsf{EDIDIR}$ ($\mathsf{EDIDIR}$\verb*|(1:8)|)
will be given as
\verb*|REF-CASE| while the last four character ($\mathsf{EDIDIR}$\verb*|(9:12)|) will be a
unique character variable representing the successive directory saved. This character variable will
be created as follows:
\vskip -0.1cm
$$
\mathtt{WRITE(}\mathsf{EDIDIR}\mathtt{(9:12),'(I4.4)')}\: J
$$
\vskip -0.1cm
where $1\leq J $ represents the $J^{\textrm{th}}$ execution of the \moc{EDI:} module. In the case
above, we would have a single editing directory of the form:
\begin{DescriptionEnregistrement}{Example of an editing directory}{8.0cm}
\DirEnr
{EDITCELL2G\blank{2}}{Two groups \dir{microlib} sub-directory}
\end{DescriptionEnregistrement}
\goodbreak
\subsection{The \moc{/REF:ADF/} sub-directory in \dir{edition}}\label{sect:editionADF}
Sub-directory containing input data for ADF-type boundary flux edition.
\begin{DescriptionEnregistrement}{Records in the \moc{/REF:ADF/} sub-directory}{7.5cm}
\IntEnr
{NTYPE\blank{7}}{$1$}
{Number of ADF-type boundary flux edits.}
\IntEnr
{NADF\blank{8}}{\tt NTYPE}
{$N^{\rm adf}_i$: number of regions included in each ADF-type boundary flux edit.}
\CharEnr
{HADF\blank{8}}{({\tt NTYPE})$*8$}
{Name of each ADF-type boundary flux edit. Standard names are: $=$ \moc{FD\_C}:
corner flux edition; $=$ \moc{FD\_B}: surface (assembly gap) flux edition; $=$ \moc{FD\_H}:
row flux edition. These are the first row of surrounding cells in the assembly.}
\IntVar
{\listedir{type}}{$N^{\rm adf}_i$}
{Set of integer arrays containing the editing information. Indices of the regions of the reference geometry belonging to the
flux edition. Name {\sl type} is a component of {\tt HADF} array.}
\end{DescriptionEnregistrement}
\clearpage
|