summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDburnup.tex
blob: 76cac2106f21eda35a67e515981b40855f37be2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
\section{Contents of a 
\dir{burnup} directory}\label{sect:burnupdir}

This directory contains the main burnup information, namely  the multigroup flux and the
isotopic concentration at each time or burnup step.

\subsection{State vector content for the \dir{burnup} data structure}\label{sect:burnupstate}

The dimensioning parameters for the \dir{burnup} data structure, which are stored in
the state vector $\mathcal{S}^{b}$, represent:

\begin{itemize}
\item The type of solution considered $I_{s}=\mathcal{S}^{b}_{1}$ where
\vskip -0.8cm
\begin{displaymath}
I_{s} = \left\{
\begin{array}{rl}
 1 & \textrm{Fifth-order Cash-Karp method}\\
 2 & \textrm{Forth-order Kaps-Rentrop method}  
\end{array} \right.
\end{displaymath}

\item The type of burnup considered $I_{t}=\mathcal{S}^{b}_{2}$ where
\vskip -0.8cm
\begin{displaymath}
I_{t} = \left\{
\begin{array}{rl}
 0 & \textrm{Out of core or zero flux/power depletion} \\
 1 & \textrm{Constant flux depletion} \\
 2 & \textrm{Constant fuel power depletion} \\
 3 & \textrm{Constant assembly power depletion} 
\end{array} \right.
\end{displaymath}

\item Number of time steps for which burnup properties are present in this directory
$N_{t}=\mathcal{S}^{b}_{3}$
 
\item Total number of isotopes $N_{I}=\mathcal{S}^{b}_{4}$ 

\item Number of depleting mixtures $N^{\rm depl}_{M}=\mathcal{S}^{b}_{5}$

\item Number of depleting reactions $N^{\rm depl}_{R}=\mathcal{S}^{b}_{6}$

\item Number of depleting isotopes $N^{\rm depl}_{I}=\mathcal{S}^{b}_{7}$

\item Number of mixtures $N_m=\mathcal{S}^{b}_{8}$

\item Microscopic reaction rate extrapolation option in solving the burnup equations
$I_{e}=\mathcal{S}^{b}_{9}$ where
\vskip -0.8cm
\begin{displaymath}
I_{e} = \left\{
\begin{array}{rl}
 0 & \textrm{Do not extrapolate} \\
 1 & \textrm{Perform linear extrapolation} \\
 2 & \textrm{Perform parabolic extrapolation} \\
\end{array} \right.
\end{displaymath}

\item Constant power normalization option for the burnup calculation
$I_{g}=\mathcal{S}^{b}_{10}$ where
\vskip -0.8cm
\begin{displaymath}
I_{g} = \left\{
\begin{array}{rl}
 -1 & \textrm{Compute the burnup using the fission rate in $^{235}U$ multiplied by 202.27 MeV} \\
 0 & \textrm{Compute the burnup using the power released in fuel} \\
 1 & \textrm{Compute the burnup using the power released in the global geometry} \\
\end{array} \right.
\end{displaymath}
This option have an effect only in cases
where some non-depleting mixtures are producing energy.

\item Saturation of initial number densities $I_{s}=\mathcal{S}^{b}_{11}$ where
\vskip -0.8cm
\begin{displaymath}
I_{s} = \left\{
\begin{array}{rl}
 0 & \textrm{Do not store saturated initial number densities in the {\sc burnup}
 object} \\
 1 & \textrm{Store saturated initial number densities} \\
\end{array} \right.
\end{displaymath}
This option have an effect only in cases where some depleting isotopes are
at saturation.

\item Type of saturation model $I_{d}=\mathcal{S}^{b}_{12}$ where
\vskip -0.8cm
\begin{displaymath}
I_{d} = \left\{
\begin{array}{rl}
 0 & \textrm{Do not use Dirac functions in saturated number densities} \\
 1 & \textrm{Use Dirac functions in saturated number densities} \\
\end{array} \right.
\end{displaymath}
This option have an effect only in cases where some depleting isotopes are
at saturation.

\item Perturbation flag for cross sections $I_{p}=\mathcal{S}^{b}_{13}$ where
\vskip -0.8cm
\begin{displaymath}
I_{p} = \left\{
\begin{array}{rl}
 0 & \textrm{Time-dependent cross sections will be used if available} \\
 1 & \textrm{Time-independent cross sections will be used} \\
\end{array} \right.
\end{displaymath}

\item Neutron flux recovery flag $I_{f}=\mathcal{S}^{b}_{14}$ where
\vskip -0.8cm
\begin{displaymath}
I_{f} = \left\{
\begin{array}{rl}
 0 & \textrm{Neutron flux is recovered from a L\_FLUX object} \\
 1 & \textrm{Neutron flux is recovered from the embedded macrolib present in a} \\
 & \textrm{L\_LIBRARY object} \\
\end{array} \right.
\end{displaymath}

\item Fission yield data recovery flag $I_{y}=\mathcal{S}^{b}_{15}$ where
\vskip -0.8cm
\begin{displaymath}
I_{y} = \left\{
\begin{array}{rl}
 0 & \textrm{Fission yield data is recovered from {\tt DEPL-CHAIN} directory (see \Sect{microlibdirdepletion})} \\
 1 & \textrm{Fission yield data is recovered from {\tt PIFI} and {\tt PYIELD} records in /isotope/} \\
 & \textrm{directory (see Table~\ref{tabl:tabiso3})} \\
\end{array} \right.
\end{displaymath}
\end{itemize}

\subsection{The main \dir{burnup} directory}\label{sect:burnupdirmain}

On its first level, the
following records and sub-directories will be found in the \dir{burnup} directory:

\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{burnup}}{8.0cm}
\CharEnr
  {SIGNATURE\blank{3}}{$*12$}
  {Signature of the \dir{burnup} data structure ($\mathsf{SIGNA}=${\tt L\_BURNUP\blank{4}}).}
\IntEnr
  {STATE-VECTOR}{$40$}
  {Vector describing the various parameters associated with this data structure
  $\mathcal{S}^{b}_{i}$, as defined in \Sect{burnupstate}.}
\RealEnr
  {EVOLUTION-R\blank{1}}{$5$}{}
  {Vector describing the various parameters associated with the burnup calculation options
$R_{i}$}
\CharEnr
  {LINK.LIB\blank{4}}{$*12$}
  {Name of the {\sc microlib} on which the last depletion step was based.}
\RealEnr
  {DEPL-TIMES\blank{2}}{$N_{t}$}{$10^{8}$ s}
  {Vector describing the various time steps at which burnup information has been saved
$T_{i}$}
\RealEnr
  {FUELDEN-INIT}{$3$}{}
  {Vector giving the initial density of heavy element in the fuel $\rho_{f}$ (g
  cm$^{-3}$), the initial mass of heavy element in the fuel $m_{f}$ (g) and the
  initial mass of heavy element in the fuel divided by the global geometry
  volume (g cm$^{-3}$)}
\RealEnr
  {VOLUME-MIX\blank{2}}{$N_m$}{cm$^3$}
  {Vector giving the mixture volumes}
\RealEnr
  {FUELDEN-MIX\blank{1}}{$N_m$}{g}
  {Initial mass of heavy element contained in each mixture}
\RealEnr
  {WEIGHT-MIX\blank{2}}{$N_m$}{g}
  {Initial mass of all the isotopes contained in each mixture}
\IntEnr
  {DEPLETE-MIX\blank{1}}{$N_m \times N^{\rm depl}_{I}$}
  {Matrix giving the index in the {\tt ISOTOPESDENS} record of each depleting
   isotope in each mixture.}
\CharEnr
  {ISOTOPESUSED}{$(N_{I})*12$}
  {Alias name of the isotopes}
\IntEnr
  {ISOTOPESMIX\blank{1}}{$N_{I}$}
  {Mixture number associated with each isotope}
\IntEnr
  {MIXTURESBurn}{$N_m$}
  {Depletion flag array. A component is set to 1 to indicate that a mixture is depleting.}
\IntEnr
  {MIXTURESPowr}{$N_m$}
  {Power flag array. A component is set to 1 to indicate that a mixture is producing power.}
\DirVar
  {\listedir{depldir}}
  {Set of $N_{t}$ sub-directories containing the properties associated with each
   burnup step $T_{i}$}
\end{DescriptionEnregistrement}

The set of directory \listedir{depldir} names $\mathsf{DEPLDIR}$ will be composed according to the
following laws. The first eight character ($\mathsf{DEPLDIR}$\verb*|(1:8)|) will always be given by 
\verb*|DEPL-DAT|. The last four characters  
($\mathsf{DEPLDIR}$\verb*|(9:12)|) represent the time step saved. For the case where
$N_{t}$ time steps were saved we would use the following FORTRAN instructions to create
the last four characters of each of the directory names:
$$
\mathtt{WRITE(}\mathsf{DEPLDIR}\mathtt{(9:12),'(I4.4)')}\: J
$$
for $1\leq J \leq N_{t}$ with the time stamp associated with each directory being given by
$T_{J}$.  For the case where ($N_{t}=2$), two such directory would be generated, namely

\begin{DescriptionEnregistrement}{Example of depletion directories}{8.0cm}
\DirEnr
  {DEPL-DAT0001}{Sub-directories which contain the information associated with
   time step 1}
\DirEnr
  {DEPL-DAT0002}{Sub-directories which contain the information associated with
   time step 2}
\end{DescriptionEnregistrement}

\clearpage

\subsection{The depletion sub-directory \dir{depldir} in
\dir{burnup}}\label{sect:burnupdirdepletion}

Inside each depletion directory the following records and sub-directories will be found:

\begin{DescriptionEnregistrement}{Contents of a depletion sub-directory in \dir{burnup}}{7.0cm}
\RealEnr
  {ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$}
  {Isotopic densities $\rho_{i}$ for each of the isotopes described in the \dir{microlib} directory
   where the order of the isotopes is also specified}
\RealEnr
  {MICRO-RATES\blank{1}}{$N^{\rm dim}$}{$10^{-8}$ s$^{-1}\ $}
  {Values of the microscopic reaction rate of the depleting reactions for each
   depleting isotope and each mixture. The macroscopic reaction rate related to the
   non-depleting isotopes is stored at location $N^{\rm depl}_{I}+1$. The
   $N^{\rm depl}_{R}$ reaction types are stored in the order of the {\tt
   'DEPLETE-IDEN'} array in Table~\ref{tabl:tabchain}, starting with the {\tt 'NFTOT'}
   reaction. The flux-induced power factors are stored in location $N^{\rm depl}_{R}$.
   The decay power (delayed) factors are stored in location $N^{\rm depl}_{R}+1$ Both
   flux-induced and decay power are given in units of $10^{-8}$ MeV/s.
   $N^{\rm dim}=(N^{\rm depl}_{I}+1)
   \times (N^{\rm depl}_{R}+1) \times N_m$}
\RealEnr
  {INT-FLUX\blank{4}}{$N_m$}{cm s$^{-1}$}
  {Integrated flux in each mixture.}
\RealEnr
  {FLUX-NORM\blank{3}}{$1$}{$1$}
  {Flux normalization constant. It is zero for out of core depletion and
   represents the
   normalization of the flux $\phi_{r}^{g}$ that is used to ensure that the cell integrated flux or
   power is that required when fixed flux or power burnup is requested}
\RealEnr
  {ENERG-MIX\blank{3}}{$N_m$}{$10^{-8}$ J}
  {Energy realeased during the time step in each mixture}
\OptRealEnr
  {FORM-POWER\blank{2}}{1}{$I_{t}=3$}{1}
  {Ratio of the global power released in the complete geometry divided by the
   power released in fuel.}
\RealEnr
  {BURNUP-IRRAD}{$2$}{}
  {Fuel burnup (MW d T$^{-1}$) and irradiation (Kb$^{-1}$) reached at this time step}
\end{DescriptionEnregistrement}

\eject