1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
\subsection{Contents of \dir{thm} data structure}\label{sect:thmdir}
This data structure contains the thermal-hydraulics information required in a multi-physics calculation
\subsubsection{The main \dir{thm} directory}\label{sect:thmdirmain}
The following records and sub-directories will be found in the first level of a \dir{thm} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{thm}}{8.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{parameter $\mathsf{SIGNA}$ containing the signature of the data structure}
\IntEnr
{STATE-VECTOR}{$40$}
{array $\mathcal{S}^{th}_{i}$ containing various integer parameters that are required to describe this data structure}
\RealEnr
{REAL-PARAM\blank{2}}{$40$}{}
{array $\mathcal{R}^{th}_{i}$ containing various floating-point parameters that are required to describe this data structure}
\RealEnr
{MESHZ\blank{7}}{$\mathcal{S}^{th}_{1}$}{m}
{initial axial meshes as recovered from the fuelmap}
\RealEnr
{REF-RAD\blank{5}}{$(\mathcal{S}^{th}_{7}-1)\times\mathcal{S}^{th}_{1}$}{m}
{initial radial meshes as recovered from the first call to {\tt THM:} module}
\RealEnr
{NB-FUEL\blank{5}}{$\mathcal{S}^{th}_{2}$}{}
{number of active fuel rods in a single assembly or number of active fuel pins in the cluster}
\RealEnr
{NB-TUBE\blank{5}}{$\mathcal{S}^{th}_{2}$}{}
{number of active guide tubes in a single assembly}
\RealEnr
{FRACT-PU\blank{4}}{$\mathcal{S}^{th}_{2}$}{}
{plutonium mass enrichment}
\OptRealEnr
{KCONDF\blank{6}}{$\mathcal{S}^{th}_{16}+3$}{$\mathcal{S}^{th}_{12}\ne 0$}{}
{coefficients of the user-defined correlation for the fuel thermal conductivity}
\OptCharEnr
{UCONDF\blank{6}}{$12$}{$\mathcal{S}^{th}_{12}\ne 0$}
{string variable set to {\tt KELVIN} or to {\tt CELSIUS}}
\OptRealEnr
{KCONDC\blank{6}}{$\mathcal{S}^{th}_{17}+3$}{$\mathcal{S}^{th}_{13}\ne 0$}{}
{coefficients of the user-defined correlation for the clad thermal conductivity}
\OptCharEnr
{UCONDC\blank{6}}{$12$}{$\mathcal{S}^{th}_{13}\ne 0$}
{string variable set to {\tt KELVIN} or to {\tt CELSIUS}}
\RealEnr
{ERROR-T-FUEL}{1}{K}
{absolute error in fuel temperature}
\RealEnr
{ERROR-D-COOL}{1}{g/cc}
{absolute error in coolant density}
\RealEnr
{ERROR-T-COOL}{1}{K}
{absolute error in coolant temperature}
\RealEnr
{ERROR-P-COOL}{1}{Pa}
{absolute error in coolant pressure}
\RealEnr
{MIN-T-FUEL\blank{2}}{1}{K}
{minimum fuel temperature}
\RealEnr
{MIN-D-COOL\blank{2}}{1}{g/cc}
{minimum coolant density}
\RealEnr
{MIN-T-COOL\blank{2}}{1}{K}
{minimum coolant temperature}
\RealEnr
{MIN-P-COOL\blank{2}}{1}{Pa}
{minimum coolant pressure}
\RealEnr
{MAX-T-FUEL\blank{2}}{1}{K}
{maximum fuel temperature}
\RealEnr
{MAX-D-COOL\blank{2}}{1}{g/cc}
{maximum coolant density}
\RealEnr
{MAX-T-COOL\blank{2}}{1}{K}
{maximum coolant temperature}
\RealEnr
{MAX-P-COOL\blank{2}}{1}{Pa}
{maximum coolant pressure}
\DirEnr
{HISTORY-DATA}
{sub-directory containing the historical values taken by the thermal-hydraulics parameters (mass flux, density, pressure, enthalpy, temperature)
in the coolant and in the fuel rod for the whole geometry}
\OptRealEnr
{RAD-PROF\_R\blank{2}}{$\mathcal{S}^{th}_{18}$}{$\mathcal{S}^{th}_{18}\ne 0$}{m}
{abscissas of the user-defined radial form factor table}
\OptRealEnr
{RAD-PROF\_F\blank{2}}{$\mathcal{S}^{th}_{18}$}{$\mathcal{S}^{th}_{18}\ne 0$}{ }
{form-factor values of the user-defined radial form factor table}
\OptRealEnr
{TIME-SR1\blank{2}}{$\mathcal{S}^{th}_{19}$}{$\mathcal{S}^{th}_{19}\ne 0$}{s}
{tabulation abscissa in time}
\OptRealEnr
{POWER-SR1\blank{2}}{$\mathcal{S}^{th}_{19}$}{$\mathcal{S}^{th}_{19}\ne 0$}{ }
{tabulation power factor corresponding to each tabulation abscissa in time}
\end{DescriptionEnregistrement}
The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_THM|. The array $\mathcal{S}^{h}_{i}$
contains the following information:
\begin{itemize}
\item $\mathcal{S}^{th}_{1}$ contains the number of axial meshes $N_{\rm z}$.
\item $\mathcal{S}^{th}_{2}$ contains the number of channels in the radial plane $N_{\rm ch}$.
\item $\mathcal{S}^{th}_{3}$ contains the maximum number of iterations for computing the
conduction integral.
\item $\mathcal{S}^{th}_{4}$ contains the maximum number of iterations for computing the
center pellet temperature.
\item $\mathcal{S}^{th}_{5}$ contains the maximum number of iterations for computing the
coolant parameters (velocity, pressure, enthapy, density) in case of a transient calculation.
\item $\mathcal{S}^{th}_{6}$ contains the number of discretisation points in fuel.
\item $\mathcal{S}^{th}_{7}$ contains the number of total discretisation points in the whole fuel rod (fuel+cladding) $N_{\rm dtot}$.
\item $\mathcal{S}^{th}_{8}$ contains the type of calculation performed by the \moc{THM:} module:
\begin{displaymath} \mathcal{S}^{th}_{8} = \left\{
\begin{array}{rl}
0 & \textrm{steady-state calculation} \\
1 & \textrm{transient calculation.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{9}$ contains the current time index.
\item $\mathcal{S}^{th}_{10}$ flag to set the gap correlation:
\begin{displaymath} \mathcal{S}^{th}_{10} = \left\{
\begin{array}{rl}
0 & \textrm{built-in correlation is used} \\
1 & \textrm{set the heat exchange coefficient of the gap as a user-defined constant.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{11}$ flag to set the heat transfer coefficient between the clad and fluid:
\begin{displaymath} \mathcal{S}^{th}_{11} = \left\{
\begin{array}{rl}
0 & \textrm{built-in correlation is used} \\
1 & \textrm{set the heat exchange coefficient between the clad and fluid as a user-defined constant.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{12}$ flag to set the fuel thermal conductivity:
\begin{displaymath} \mathcal{S}^{th}_{12} = \left\{
\begin{array}{rl}
0 & \textrm{built-in correlation is used} \\
1 & \textrm{set the fuel thermal conductivity as a function of a simple user-defined correlation.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{13}$ flag to set the clad thermal conductivity:
\begin{displaymath} \mathcal{S}^{th}_{13} = \left\{
\begin{array}{rl}
0 & \textrm{built-in correlation is used} \\
1 & \textrm{set the clad thermal conductivity as a function of a simple user-defined correlation.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{14}$ type of approximation used during the fuel conductivity evaluation:
\begin{displaymath} \mathcal{S}^{th}_{14} = \left\{
\begin{array}{rl}
0 & \textrm{use a rectangle quadrature approximation} \\
1 & \textrm{use an average approximation.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{15}$ type of subcooling model:
\begin{displaymath} \mathcal{S}^{th}_{15} = \left\{
\begin{array}{rl}
0 & \textrm{use the Bowring correlation} \\
1 & \textrm{use the Saha-Zuber correlation.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{16}$ contains the number of terms in the user-defined correlation for the fuel thermal conductivity (if $\mathcal{S}^{th}_{12}=1$).
\item $\mathcal{S}^{th}_{17}$ contains the number of terms in the user-defined correlation for the clad thermal conductivity (if $\mathcal{S}^{th}_{13}=1$).
\item $\mathcal{S}^{th}_{18}$ type of radial form factor for the power:
\begin{displaymath} \mathcal{S}^{th}_{18} = \left\{
\begin{array}{rl}
0 & \textrm{flat radial form factor} \\
N_{\rm rad} & \textrm{number of point in the radial form factor table.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{19}$ number of points in the user-defined time-power table.
\item $\mathcal{S}^{th}_{20}$ type of fluid:
\begin{displaymath} \mathcal{S}^{th}_{20} = \left\{
\begin{array}{rl}
0 & \textrm{light water (H$_2$O)} \\
1 & \textrm{heavy water (D$_2$O).} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{21}$ flag indicating if the gap is considered:
\begin{displaymath} \mathcal{S}^{th}_{21} = \left\{
\begin{array}{rl}
0 & \textrm{gap is considered} \\
1 & \textrm{is not.} \\
\end{array} \right.
\end{displaymath}
\item $\mathcal{S}^{th}_{22}$ flag indicating the pressure drop option:
\begin{displaymath} \mathcal{S}^{th}_{22} = \left\{
\begin{array}{rl}
0 & \textrm{no pressure drop} \\
1 & \textrm{pressure drop is computed.} \\
\end{array} \right.
\end{displaymath}
\end{itemize}
The array $\mathcal{R}^{th}_{i}$ contains the following information:
\begin{itemize}
\item $\mathcal{R}^{th}_{1}$ contains the current time step in s.
\item $\mathcal{R}^{th}_{2}$ contains the fraction of reactor power released in fuel.
\item $\mathcal{R}^{th}_{3}$ contains the critical heat flux in W/m$^2$.
\item $\mathcal{R}^{th}_{4}$ contains the inlet coolant velocity in m/s.
\item $\mathcal{R}^{th}_{5}$ contains the outlet coolant pressure in Pa.
\item $\mathcal{R}^{th}_{6}$ contains the inlet coolant temperature in K.
\item $\mathcal{R}^{th}_{7}$ contains the fuel porosity.
\item $\mathcal{R}^{th}_{8}$ contains the fuel pellet radius
\item $\mathcal{R}^{th}_{9}$ contains the internal clad rod radius in m.
\item $\mathcal{R}^{th}_{10}$ contains the external clad rod radius in m.
\item $\mathcal{R}^{th}_{11}$ contains the guide tube radius in m.
\item $\mathcal{R}^{th}_{12}$ contains the hexagonal side in m. Used only for cluster geometries.
\item $\mathcal{R}^{th}_{13}$ contains the temperature maximum absolute error (in K) allowed in the solution of the conduction equations.
\item $\mathcal{R}^{th}_{14}$ contains the maximum relative error allowed in the matrix resolution of the conservation equations of the coolant.
\item $\mathcal{R}^{th}_{15}$ contains the relaxation parameter for the multiphysics parameters (temperature of fuel and coolant and density of coolant).
\item $\mathcal{R}^{th}_{16}$ contains the time in s.
\item $\mathcal{R}^{th}_{17}$ contains the heat transfer coefficient of the gap (if $\mathcal{S}^{th}_{10}=1$).
\item $\mathcal{R}^{th}_{18}$ contains the heat transfer coefficient between the clad and fluid (if $\mathcal{S}^{th}_{11}=1$).
\item $\mathcal{R}^{th}_{19}$ contains the surface temperature weighting factor of effective fuel temperature for the Rowlands approximation.
\item $\mathcal{R}^{th}_{20}$ reactor power, as defined after the {\tt POWER-LAW} keyword.
\item $\mathcal{R}^{th}_{21}$ maximum of variable variations in local parameters (used for time step adjustment strategy).
\item $\mathcal{R}^{th}_{22}$ contains the rugosity of the fuel rod in m, used in M\"uller-Steinhagen correlation for coolant friction.
\item $\mathcal{R}^{th}_{23}$ contains the angle in radians of the fuel channel with respect of the vertical axis.
\end{itemize}
\subsubsection{The \moc{HISTORY-DATA} sub-directory}\label{sect:thmdirhistorydata}
In the \moc{HISTORY-DATA} directory, the following sub-directories will be found:
\begin{DescriptionEnregistrement}{Sub-directories in \moc{HISTORY-DATA} directory}{7.0cm} \label{tabl:tabhistorydatadir}
\DirEnr
{TIMESTEP0000}
{sub-directory containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module {\sl in steady-state conditions}.}
\DirEnr
{TIMESTEP{\sl numt}}
{sub-directories containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module in transient conditions at a given time index {\sl numt}. {\sl numt} can take values between 1 and 9999 in I4.4 format.}
\end{DescriptionEnregistrement}
\noindent In the \moc{TIMESTEP0000} and in each of the \moc{TIMESTEP}{\sl numt} sub-directories, the following records will be found:
\begin{DescriptionEnregistrement}{Records in \moc{TIMESTEP} directories}{7.0cm} \label{tabl:tabtimestepdir}
\RealEnr
{TIME\blank{8}}{$1$}{$s$}
{time}
\DirlEnr
{\moc{CHANNEL}\blank{5}}{$N_{\rm ch}$}
{list of $N_{\rm ch}$ sub-directories containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module and sorted channel by channel.}
\end{DescriptionEnregistrement}
\noindent In each of the \moc{CHANNEL} sub-directories, the following records will be found:
\begin{DescriptionEnregistrement}{Records in each \moc{CHANNEL} directory}{7.0cm} \label{tabl:tabchanneldir}
\RealEnr
{VINLET\blank{6}}{$1$}{$m.s^{-1}$}
{inlet velocity}
\RealEnr
{TINLET\blank{6}}{$1$}{$K$}
{inlet temperature}
\RealEnr
{PINLET\blank{6}}{$1$}{$Pa$}
{inlet pressure}
\RealEnr
{VELOCITIES\blank{2}}{$N_{\rm z}$}{$m.s^{-1}$}
{velocity in each of the $N_{\rm z}$ bundles of the channel numbered {\sl numc}}
\RealEnr
{PRESSURE\blank{4}}{$N_{\rm z}$}{$Pa$}
{pressure in each bundle of the channel}
\RealEnr
{ENTHALPY\blank{4}}{$N_{\rm z}$}{$J.kg^{-1}$}
{enthalpy in each bundle of the channel}
\RealEnr
{DENSITY\blank{5}}{$N_{\rm z}$}{$kg.m^{-3}$}
{density in each bundle of the channel}
\RealEnr
{LIQUID-DENS\blank{1}}{$N_{\rm z}$}{$kg.m^{-3}$}
{density of liquid phase in each bundle of the channel}
\RealEnr
{TEMPERATURES}{$N_{\rm z}, N_{\rm dtot}$}{$K$}
{distribution of the temperature in the fuel-pin for each bundle of the channel}
\RealEnr
{CENTER-TEMPS}{$N_{\rm z}$}{$K$}
{center fuel pellet temperature in each bundle of the channel}
\RealEnr
{RADII}{$N_{\rm z}, N_{\rm dtot}-1$}{$m$}
{fuel and clad radii}
\end{DescriptionEnregistrement}
\clearpage
|