1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
\subsection{The {\tt DREF:} module}\label{sect:DREFData}
This module is used to set fixed sources that can be used in the right hand term of an adjoint
fixed source eigenvalue problem. This type of equation appears in generalized perturbation theory (GPT) applications.
The fixed sources set in {\tt DREF:} are corresponding to the gradient of the RMS functional which is a measure of
the discrepancy between actual and reference (or target) reaction rate distributions. The actual reaction rate distribution
is recovered from a \dusa{MICRO} or \dusa{MACRO} object. The reference reaction rate distribution is recovered from
a \dusa{MICREF} or \dusa{MACREF} object.
\subsubsection{Minimizing the RMS error of power distribution}
The fixed sources are computed for the case where the \dds{optimize} object was initialized in module {\tt DLEAK:}. This option is used with the {\sl OPTEX
reflector model}.\cite{optex3}
Actual power values are defined as
$$
P_i\{\bff(\phi)(r)\}\equiv \left< H , \phi \right>_i=\int_0^\infty dE \int_{V_i} d^3r \, H(\bff(r),E) \, \phi(\bff(r),E)
$$
\noindent where the power factors $H(\bff(r),E)$ and fluxes $\phi(\bff(r),E)$ are recovered from {\tt H-FACTOR} and
{\tt FLUX-INTG} records in a {\sc macrolib} object.
\vskip 0.08cm
The RMS error on power distribution is an homogeneous functional of the flux defined as
$$
{\cal F}\{\bff(\phi)(r)\}=\sum_i \left({\left< H , \phi \right>_i\over \left< H , \phi \right>} - {P^*_i\over \sum_j P^*_j} \right)^2
$$
\noindent where the reference (or target) powers $P^*_i$ are obtained from the full-core reference transport calculation.
\vskip 0.08cm
The gradient of functional ${\cal F}\{\bff(\phi)(r)\}$ is a $G$-group function of space defined as
\begin{align*}
\bff(\nabla){\cal F}\{\bff(\phi)(\zeta);\bff(r)\}={2\over \left< H , \phi \right>} \sum_i \left({\left< H , \phi \right>_i\over \left< H , \phi \right>} -
{P^*_i\over \sum_j P^*_j}\right)\left( \delta_i(\bff(r))-{\left< H , \phi \right>_i\over \left< H , \phi \right>} \right) \left[\begin{matrix}H_1(\bff(r))\cr H_2(\bff(r)) \cr \vdots \cr H_G(\bff(r)) \end{matrix}\right]
\end{align*}
\noindent where $\delta_i(\bff(r))=1$ if $\bff(r) \in V_i$ and $=0$ otherwise.
\vskip 0.08cm
Each fixed source $\bff(\nabla){\cal F}\{\bff(\phi)(\zeta);\bff(r)\}$ is orthogonal to the flux $\bff(\phi)(\bff(r))$.
\subsubsection{Minimizing the RMS error associated with SPH factor calculation}\label{sect:sph_newton}
The fixed sources are computed for the case where the \dds{optimize} object was initialized in module {\tt DSPH:}. Module
{\tt DREF} is call to compute the gradients required for computing SPH factors using an optimization algorithm (OPTEX in
{\tt PLQ:}, quasi-Newton in {\tt LNSR:}, Newton in {\tt FPSPH:}). Module {\tt DREF} computes the direct gradients and the
fixed sources to be used in a fixed-source eigenvalue problem originating from the generalized perturbation theory (GPT).
\vskip 0.08cm
Fundamental mode conditions are the cases where no neutron is leaking due to the boundary conditions. In the case where the macro-calculation over macro-group $g$ is done
in non-fundamental mode conditions, it is proposed to apply a SPH correction
on the {\sl albedo functions} corresponding to boundaries with a non-conservative condition in the reference calculation.\cite{sph2019} If the macro calculation is performed in diffusion
or $P_1$ approximation, the albedo function $\Lambda(\beta_g)$ corresponding to a non-conservative boundary is defined as
\begin{equation}
\Lambda(\beta_g)={1\over 2}{1-\beta_g \over 1+\beta_g}
\label{eq:eq1.6}
\end{equation}
\noindent where $\beta_g$ is the albedo in macro-group $g$. The net current $\bff(J)_g(\bff(r))$ escaping the domain at point $\bff(r)$ of the boundary is given by the {\sl albedo boundary condition} as
\begin{equation}
-\bff(J)_g(\bff(r))\cdot\bff(N)(\bff(r))+\Lambda(\beta_g) \, \phi_g(\bff(r))=0 \ \ \ \ {\rm if} \ \bff(r) \in \partial V
\label{eq:eq1.7}
\end{equation}
\noindent where $\partial V$ is the fraction of the domain where the non-conservative boundary condition is applied and $\bff(N)(\bff(r))$ is the outgoing normal unit vector.
\vskip 0.08cm
The integrated flux are defined over the macro-region $m$ and macro-group $g$ as
\begin{equation}
F_{m,g}\equiv \left< \phi \right>_{m,g}=\int_{V_m} d^3r \, \phi_g(\bff(r))
\label{eq:eq1.7a}
\end{equation}
\vskip 0.08cm
The net leakage $L_{g}$ over each macro group due to non conservative boundary conditions is defined as
\begin{equation}
L_{g}\equiv \left< \Lambda\phi\right>_g= \int_{\partial V} d^2r \, \Lambda(\beta_g) \, \phi_g(\bff(r)) =\int_{\partial V} d^2r \,\bff(J)_g(\bff(r))\cdot \bff(N)(\bff(r))\ .
\label{eq:eq1.8}
\end{equation}
\vskip 0.08cm
In order to preserve the neutron balance in macro-group $g$, cross section data and albedo functions must all be SPH corrected. The correction specific to albedo functions is written
\begin{equation}
\tilde\Lambda_g=\mu_{M+1,g}\, \Lambda^*_g
\label{eq:eq1.9}
\end{equation}
\noindent where $M$ is the total number of macro-regions and $\Lambda^*_g$ is the albedo function of the reference calculation in macro-group $g$. This
correction technique is proposed as an alternative to the discontinuity factor correction used by Ref. \citen{inl}.
\vskip 0.08cm
In fundamental mode conditions and in cases where Eq.~(\ref{eq:eq1.9}) is used, an infinity of
SPH factor sets can satisfy the reference reaction rates in each macro-group $g$.
A unique set is selected with the application of an arbitrary normalization condition. The simplest option is to use the {\sl flux-volume normalization condition} which consists to preserve the averaged flux
in the lattice. This normalization condition, satisfied in each macro-group $g$, is written
\begin{equation}
\sum_{m=1}^M \int_{V_m} d^3r \ \widetilde\phi_{g}(\bff(r))=\sum_{m=1}^M F_{m,g}^{*} \ , \ \ g \le G
\label{eq:eq1.10}
\end{equation}
\noindent where $F_{m,g}^{*}$ is the volume-integrated flux in macro-region $V_m$ and macro-group $g$ of the reference calculation.
\vskip 0.08cm
Equation~(\ref{eq:eq1.10}) can be rewritten as
\begin{equation}
\sum_{m=1}^M {F_{m,g}^{*}\over \mu_{m,g}}=\sum_{m=1}^M F_{m,g}^{*} \ , \ \ g \le G .
\label{eq:eq1.11}
\end{equation}
The absorption rates are defined over the macro-region $m$ and macro-group $g$ as
\begin{equation}
P_{{\rm a},m,g}\equiv \left< \Sigma_{\rm a} , \phi \right>_{m,g}=\int_{V_m} d^3r \, \Sigma_{{\rm a},g}(\bff(r)) \, \phi_g(\bff(r))
\label{eq:eq2.2}
\end{equation}
\noindent where $i\le I$ and $g\le G$ and where
\begin{equation}
\Sigma_{{\rm a},g}(\bff(r))=\Sigma_g(\bff(r))-\Sigma_{{\rm s},g}(\bff(r)) .
\label{eq:eq2.3}
\end{equation}
\vskip 0.08cm
The $\nu$-fission rates are defined over the macro-region $m$ and macro-group $g$ as
\begin{equation}
P_{{\rm f},m,g}\equiv \left< \nu\Sigma_{\rm f} , \phi \right>_{m,g}=\int_{V_m} d^3r \, \nu\Sigma_{{\rm f},g}(\bff(r)) \, \phi_g(\bff(r))
\label{eq:eq2.2b}
\end{equation}
\noindent where $i\le I$ and $g\le G$ and where $\nu\Sigma_{{\rm f},g}(\bff(r))$ is the macroscopic fission cross section multiplied by the averaged number of neutrons emitted per fission.
\vskip 0.08cm
The absorption and $\nu$-fission cross sections are corrected according to
\begin{equation}
\Sigma_{{\rm a},m,g}=\mu_{m,g}\, \Sigma^*_{{\rm a},m,g} =\mu_{m,g}\, {P^*_{{\rm a},m,g} \over F^*_{m,g}}
\label{eq:eq2.4}
\end{equation}
\noindent and
\begin{equation}
\nu\Sigma_{{\rm f},m,g}=\mu_{m,g}\, \nu\Sigma^*_{{\rm f},m,g} =\mu_{m,g}\, {P^*_{{\rm f},m,g} \over F^*_{m,g}}
\label{eq:eq2.4b}
\end{equation}
\noindent where the reference integrated fluxes $F^*_{m,g}$ are also obtained from the full-core reference transport calculation. The SPH factors are normalized in each macro energy group
according to
\begin{equation}
\sum_{j=1}^M{F^*_{j,g} \over \mu_{j,g}} = \sum_j F^*_{j,g} \ , \ \ g \le G .
\label{eq:eq2.5}
\end{equation}
\vskip 0.08cm
The RMS error on absorption distribution is an homogeneous functional of the flux defined as
\begin{equation}
{\cal F}\{\bff(\phi)(\bff(r))\}=\sum_{m=1}^{M+2} \sum_{g=1}^G \left( f_{m,g}\{\bff(\phi)(\bff(r))\} \right)^2
\label{eq:eq2.6}
\end{equation}
\noindent where the components $f_{m,g}\{\bff(\phi)(\bff(r))\}$ are the $M+2$ conditions to satisfy in each macro-group. They are defined as
\begin{equation}
f_{m,g}\{\bff(\phi)(\bff(r))\}=\begin{cases} {{\displaystyle \left< \Sigma_{\rm a} , \phi \right>_{m,g}\over\displaystyle \left< \Sigma_{\rm a} , \phi \right>} {\displaystyle P^*_{{\rm a},{\rm tot}}\over \displaystyle \Delta_{{\rm a},m,g} } - {\displaystyle P^*_{{\rm a},m,g} \over \displaystyle \Delta_{{\rm a},m,g} }} & \text{if $m\le M$} \\
\sqrt{M}\left( {\displaystyle \left<\Lambda+\Sigma_{\rm a} , \phi\right>_g\over\displaystyle \left< \nu\Sigma_{\rm f} ,\phi \right>} {\displaystyle P^*_{{\rm f},{\rm tot}}\over\displaystyle \Delta_{{\rm L},g} } - {\displaystyle L^*_{g}+P^*_{{\rm a},g} \over\displaystyle \Delta_{{\rm L},g}}\right) & \text{if $m = M+1$} \\
{\displaystyle 1\over \displaystyle F^*_g}\sum\limits_{j=1}^M {\displaystyle F^*_{j,g} \over \displaystyle \mu_{j,g}} - 1 & \text{if $m= M+2$} \end{cases}
\label{eq:eq2.7}
\end{equation}
\noindent with
\begin{description}
\item[$P^*_{{\rm a},m,g}=$] reference (or target) absorption rates obtained from the full-core reference transport calculation
\item[$P^*_{{\rm f},m,g}=$] reference (or target) $\nu$-fission rates obtained from the full-core reference transport calculation
\item[$\Delta_{{\rm a},m,g}=$] low limit absorption rates defined as $\max \left( 10^{-4} P^*_{{\rm a},{\rm tot}},P^*_{{\rm a},m,g}\right)$ in order to avoid
division by small numbers.
\item[$L^*_{g}=$] reference leakage in macro-group $g$
\item[$\Lambda(\bff(r))=$] albedo function defined on the non-conservative boundaries $\partial V$ of the domain
\item[$\Delta_{{\rm L},g}=$] low limit leakage defined as $\max \left( 10^{-4} P^*_{{\rm f},{\rm tot}},L^*_{g}+P^*_{{\rm a},g} \right)$ in order to avoid
division by small numbers.
\end{description}
\noindent and where $P^*_{{\rm a},g}=\sum_m P^*_{{\rm a},m,g}$, $P^*_{{\rm a},{\rm tot}}=\sum_g P^*_{{\rm a},g}$, $P^*_{{\rm f},{\rm tot}}=\sum_m \sum_g P^*_{{\rm f},m,g}$ and $F^*_g=\sum_m F^*_{m,g}$.
\vskip 0.08cm
The condition $m=M+1$ in
Eq.~(\ref{eq:eq2.7}) is based on the preservation of the effective multiplication factor of the core. The SPH normalization relations~(\ref{eq:eq1.11}) are
included in the RMS error in order to simplify the optimization process.
\vskip 0.08cm
The gradient of functional~(\ref{eq:eq2.6}) with respect to a variation of flux $\phi$ is a $G$-group function of space whose components are defined as
\begin{equation}
\nabla {\cal F}_g\{\bff(\phi)(\bff(\zeta));\bff(r)\}=\left[ {d\over d\epsilon}{\cal F}\{\bff(\phi)(\bff(\zeta))+\epsilon \, \bff(\delta)_g(\bff(\zeta)-\bff(r))\}\right]_{\epsilon=0} ; \ \ g=1,G
\label{eq:eq2.7a}
\end{equation}
\noindent where $\bff(\delta)_g(\bff(\zeta)-\bff(r))$ is a multidimensional Dirac delta distribution defined as
\begin{equation}
\bff(\delta)_g(\bff(\zeta)-\bff(r))={\rm col} \left[\delta_{g,h} \, \delta(\bff(\zeta)-\bff(r)) \, , \, h=1,G \right]
\label{eq:eq2.7b}
\end{equation}
\noindent where $\delta_{g,h}$ is a Kronecker delta function and $\delta(\bff(\zeta)-\bff(r))$ is the classical Dirac delta distribution.
\vskip 0.08cm
Next, we evaluate the gradient of each component $f_{m,g}\{\bff(\phi)(\bff(r))\}$ with respect to the SPH factors and we construct a rectangular matrix $\shadowA$, of size $(M+2)G\times (M+1)G$, defined as
\begin{equation}
\shadowA=\left\{ {\partial f_{m,g}\over \partial \mu_{n,h}} ; \ \ m\le M+2, \ n \le M+1, \ g\le G, \ h\le G \right\} .
\label{eq:eq2.8}
\end{equation}
\vskip 0.08cm
We first evaluate the direct contribution of these derivatives for a variation of the SPH factors assigned to cross sections (i.e., for $n\le M$). Direct contributions are the chain rule terms not involving a variation in flux. These direct
gradients are
\begin{equation}
\left.{\partial f_{m,g}\over \partial \mu_{n,h}}\right|^{\rm direct} \negthinspace\negthinspace ={\left< \Sigma_{\rm a} , \phi \right>_{m,g}\over \mu_{n,h} \left< \Sigma_{\rm a} , \phi \right>} {P^*_{{\rm a},{\rm tot}}\over \Delta_{{\rm a},m,g} } \left( \delta_{m,n}\delta_{g,h}-{\left< \Sigma_{\rm a} , \phi \right>_{n,h}\over \left< \Sigma_{\rm a} , \phi \right>} \right) \ \ {\rm if} \ m\le M
\label{eq:eq2.9}
\end{equation}
\begin{equation}
\left.{\partial f_{M+1,g}\over \partial \mu_{n,h}}\right|^{\rm direct} \negthinspace\negthinspace = { \sqrt{M} \over \mu_{n,h} \left< \nu\Sigma_{\rm f},\phi\right>} {P^*_{{\rm f},{\rm tot}}\over \Delta_{{\rm L},g} }
\left( \delta_{g,h}\left<\Sigma_{\rm a} ,\phi\right>_{n,h}-\left<\Lambda+\Sigma_{\rm a} ,\phi\right>_g {\left< \nu\Sigma_{\rm f} ,\phi \right>_{n,h} \over \left< \nu\Sigma_{\rm f},\phi\right>}\right)
\label{eq:eq2.10}
\end{equation}
\noindent and
\begin{equation}
\left.{\partial f_{M+2,g}\over \partial \mu_{n,h}}\right|^{\rm direct} \negthinspace\negthinspace = -\delta_{g,h}\, {F^*_{n,g} \over \mu_{n,g}^2 F^*_g} .
\label{eq:eq2.11}
\end{equation}
\vskip 0.08cm
The SPH factors assigned to the albedo functions are not responsible for any direct contributions to the derivatives of component $f_{m,g}\{\bff(\phi)(\bff(r))\}$. Consequently,
\begin{equation}
\left.{\partial f_{m,g}\over \partial \mu_{M+1,h}}\right|^{\rm direct}=0 .
\label{eq:eq2.11a}
\end{equation}
\vskip 0.08cm
The indirect gradient of each component $f_{m,g}\{\bff(\phi)(\bff(r))\}$ with respect to the SPH factors are an effect of {\sl flux variation} and are obtained using {\sl generalized perturbation theory} (GPT). The gradient of functional $f_{m,g}\{\bff(\phi)(\bff(r))\}$ with respect to a variation of flux is a $G$-group function of space defined as
\begin{equation}
\bff(\nabla)f_{m,g}\{\bff(\phi)(\bff(\zeta));\bff(r)\}=\left[\begin{matrix}f_{m,g,1}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \cr f_{m,g,2}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \cr \vdots\cr f_{m,g,G}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \end{matrix}\right]
\label{eq:eq2.12}
\end{equation}
\noindent where the group-$h$ components are
\begin{equation}
\nabla f_{m,g,h}\{\bff(\phi)(\bff(\zeta));\bff(r)\} = {\Sigma_{{\rm a},h}(\bff(r))\over \left< \Sigma_{\rm a} , \phi \right>} {P^*_{{\rm a},{\rm tot}}\over \Delta_{{\rm a},m,g} } \left( \delta_m(\bff(r)) \, \delta_{g,h}-
{\left< \Sigma_{\rm a} , \phi \right>_{m,g}\over \left< \Sigma_{\rm a} , \phi \right>} \right) \ \ {\rm if} \ m\le M
\label{eq:eq2.13}
\end{equation}
\noindent where $\delta_m(\bff(r))=1$ if $\bff(r) \in V_m$ and $=0$ otherwise,
\begin{eqnarray}
\nonumber \nabla f_{M+1,g,h}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \negthinspace &=& \negthinspace { \sqrt{M} \over \left< \nu\Sigma_{\rm f} , \phi \right>} {P^*_{{\rm f},{\rm tot}}\over \Delta_{{\rm L},g} } \bigg[ \left(\Lambda_{h}(\bff(r))+\Sigma_{{\rm a},h}(\bff(r))\right) \, \delta_{g,h} \\
&-& \negthinspace \nu\Sigma_{{\rm f},h}(\bff(r))\, {\left< \Lambda+\Sigma_{\rm a} , \phi \right>_{g}\over \left< \nu\Sigma_{\rm f} , \phi \right>} \bigg]
\label{eq:eq2.14}
\end{eqnarray}
\noindent and
\begin{equation}
\nabla f_{M+2,g,h}\{\bff(\phi)(\bff(\zeta));\bff(r)\} = 0 .
\label{eq:eq2.15}
\end{equation}
\vskip 0.08cm
We first compute the gradient $\bff(g)$ of the RMS error with respect to a variation of the SPH factors. We define three column vectors as
\begin{equation}
\bff(f)={\rm col} \left\{ f_{m,g}\{\bff(\phi)(\bff(r))\} \ ; \ \ m\le M+2, \ g\le G \right\} ,
\label{eq:eq2.16}
\end{equation}
\begin{equation}
\bff(\nabla)\bff(f)={\rm col} \left\{ \bff(\nabla)f_{m,g}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \ ; \ \ m\le M+2, \ g\le G \right\}
\label{eq:eq2.17}
\end{equation}
\noindent and
\begin{equation}
\bff(g)={\rm col} \left\{ {\partial {\cal F}\{\bff(\phi)(\bff(r))\} \over \partial \mu_{n,h}} ; \ \ n\le M+1, \ h\le G \right\} .
\label{eq:eq2.18}
\end{equation}
\vskip 0.08cm
From Eqs.~(\ref{eq:eq2.6}) and~(\ref{eq:eq2.7a}), we have
\begin{equation}
{\cal F}\{\bff(\phi)(\bff(r))\}=\bff(f)^\top \bff(f)
\label{eq:eq2.19}
\end{equation}
\noindent and
\begin{equation}
\bff(\nabla){\cal F}\{\bff(\phi)(\bff(\zeta));\bff(r)\}=2\bff(f)^\top \bff(\nabla)\bff(f)
\label{eq:eq2.20}
\end{equation}
\noindent so that
\begin{equation}
{\partial {\cal F} \over \partial \mu_{n,h}} =2\sum_{m=1}^{M+2} \sum_{g=1}^G f_{m,g}\, {\partial f_{m,g} \over \partial \mu_{n,h}}
\label{eq:eq2.21}
\end{equation}
\noindent where the derivatives of $f_{m,g}$ are computed taking into account both direct and indirect contributions:
\begin{equation}
{\partial f_{m,g} \over \partial \mu_{n,h}}=\left.{\partial f_{m,g} \over \partial \mu_{n,h}}\right|^{\rm direct}+\left< \bff(\nabla) f_{m,g}\{\bff(\phi)(\bff(\zeta));\bff(r)\},{\partial\over \partial\mu_{n,h}}\bff(\phi)(\bff(r))\right>
\label{eq:eq2.22}
\end{equation}
\noindent and where the bracket stands for a summation over the $G$ energy groups and an integration over the domain. The flux derivatives $\partial\bff(\phi) / \partial\mu_{n,h}$ are $G$-group functions obtained using generalized perturbation theory.
\vskip 0.08cm
Equation~(\ref{eq:eq2.21}) can be rewritten in matrix form as
\begin{equation}
\bff(g)=2 \shadowA^\top \bff(f) .
\label{eq:eq2.23}
\end{equation}
\vskip 0.08cm
The bracket term in Eq.~(\ref{eq:eq2.22}) is computed by module {\tt GRAD:}, outside module {\tt DREF:}. Module
{\tt GRAD:} compute only the {\sl direct contributions} of the gradients:
\begin{itemize}
\item By default, the objective function ${\cal F}\{\bff(\phi)(\bff(r))\}$ and direct components of vector $\bff(g)$ are computed.
\item If keyword {\tt NEWTON} is set, individual components $f_{m,g}\{\bff(\phi)(\bff(r))\}$ and direct components of matrix $\shadowA$ are computed.
\end{itemize}
\subsubsection{Calling specifications}
The calling specifications for module {\tt DREF:} are:
\begin{DataStructure}{Structure \dstr{DREF:}}
\dusa{SOURCE}~\dusa{OPTIM}~\moc{:=}~\moc{DREF:}~\dusa{OPTIM}~\dusa{FLUX}~\dusa{TRACK}~$\{$~\dusa{MICRO}~$|$~\dusa{MACRO}~$\}$ \\
~~~~~~$\{$~\dusa{MICREF}~$|$~\dusa{MACREF}~$\}$ \\
~~~~~~$[$ \moc{::}~$[$ \moc{EDIT}~\dusa{iprint} $]~[$ \moc{NODERIV} $]~[$ \moc{NEWTON} $]~[$ \moc{RMS} {\tt>>}\dusa{RMS\_VAL}{\tt <<}~$]~~]$~;
\end{DataStructure}
\noindent where
\begin{ListeDeDescription}{mmmmmmm}
\item[\dusa{SOURCE}] {\tt character*12} name of a {\sc fixed sources} (type {\tt L\_SOURCE}) object open in creation
mode. This object contains the adjoint fixed source corresponding to the RMS error on power distribution.
\item[\dusa{OPTIM}] \texttt{character*12} name of the \dds{optimize} object ({\tt L\_OPTIMIZE} signature) containing the
optimization informations. Object \dusa{OPTIM} must appear on both LHS and RHS to be able to update the previous values.
\item[\dusa{FLUX}] {\tt character*12} name of the actual {\sc flux} (type {\tt L\_FLUX}) object open in read-only mode.
\item[\dusa{TRACK}] {\tt character*12} name of the actual {\sc tracking} (type {\tt L\_TRACK}) object open in read-only mode.
\item[\dusa{MICRO}] {\tt character*12} name of the actual {\sc microlib} (type {\tt L\_LIBRARY}) object open in read-only mode. The information on
the embedded macrolib is used.
\item[\dusa{MACRO}] {\tt character*12} name of the actual {\sc macrolib} (type {\tt L\_MACROLIB}) object open in read-only mode.
\item[\dusa{MICREF}] {\tt character*12} name of reference (or target) {\sc microlib} (type {\tt L\_LIBRARY}) object open in read-only mode. The
information contained in the embedded macrolib is used to compute $P^*_i$ values.
\item[\dusa{MACREF}] {\tt character*12} name of reference (or target) {\sc macrolib} (type {\tt L\_MACROLIB}) object open in read-only mode. This
information is used to compute $P^*_i$ values.
\item[\moc{EDIT}] keyword used to set \dusa{iprint}.
\item[\dusa{iprint}] index used to control the printing in module {\tt DREF:}. =0 for no print; =1 for minimum printing (default value).
\item[\moc{NODERIV}] keyword used to stop processing of {\tt DREF:} module after calculation of objective function. By default, information
related to the gradient of the RMS functional is also computed.
\item[\moc{NEWTON}] keyword used to enable the detailed calculation of gradient for all components of the objective function, as required by a
full Newtonian approach. By default, only the gradient of the objective function is computed.
\item[\moc{RMS}] keyword used to recover the RMS error on power or absorption distribution in a CLE-2000 variable.
\item[\dusa{RMS\_VAL}] {\tt character*12} CLE-2000 variable name in which the extracted RMS value will be placed. This variable should be
declared real or double precision.
\end{ListeDeDescription}
\eject
|