1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
\subsection{Contents of \dir{history} data structure}\label{sect:hstdir}
This data structure contains the information required to ensure a smooth coupling of DRAGON with DONJON when a history
based full reactor calculation is to be performed.
\subsubsection{The main directory}\label{sect:historydirmain}
The following records and sub-directories will be found in the first level of a \dir{history} directory:
\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{history}}{8.0cm}
\CharEnr
{SIGNATURE\blank{3}}{$*12$}
{parameter $\mathsf{SIGNA}$ containing the signature of the data structure}
\IntEnr
{STATE-VECTOR}{$40$}
{array $\mathcal{S}^{h}_{i}$ containing various parameters that are required to describe this data structure}
\RealEnr
{BUNDLELENGTH}{1}{cm}
{parameter $L_{z}$ containing the fuel bundle length}
\CharEnr
{NAMEGLOBAL\blank{2}}{($\mathcal{S}^{h}_{1}$)$*12$}
{array $\mathcal{G}_{j}$ containing the names of the global parameters}
\RealEnr
{PARAMGLOBAL\blank{1}}{$\mathcal{S}^{h}_{1}$}{}
{array $G_{j}$ containing the value of the global parameters}
\CharEnr
{NAMELOCAL\blank{3}}{($\mathcal{S}^{h}_{2}$)$*12$}
{array $\mathcal{L}_{j}$ containing the names of the local parameters}
\IntEnr
{CELLID\blank{6}}{$\mathcal{S}^{h}_{3},\mathcal{S}^{h}_{4}$}
{array $C_{i,j}$ containing an identification number associated with bundle $i$ and channel $j$}
\IntEnr
{FUELID\blank{6}}{$\mathcal{S}^{h}_{3},\mathcal{S}^{h}_{4}$}
{array $F_{i,j}$ containing the fuel type associated with bundle $i$ and channel $j$}
\DirVar
{\listedir{FUELDIR}}
{list of sub-directories $\mathsf{FUEL}_{i,j}$ that contain the properties associated with the fuel type $F_{i,j}$}
\DirVar
{\listedir{CELLDIR}}
{list of sub-directories $\mathsf{CELL}_{i,j}$ that contain the properties associated with the cell $C_{i,j}$}
\end{DescriptionEnregistrement}
The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_HISTORY |. The array $\mathcal{S}^{h}_{i}$
contains the following information:
\begin{itemize}
\item $\mathcal{S}^{h}_{1}=N_{g}$ contains the number of global parameters.
\item $\mathcal{S}^{h}_{2}=N_{l}$ contains the number of local parameters.
\item $\mathcal{S}^{h}_{3}=N_{b}$ contains the number of bundles per channel.
\item $\mathcal{S}^{h}_{4}=N_{c}$ contains the number of channels in the core.
\item $\mathcal{S}^{h}_{5}=N_{s}$ contains the number of bundle shift.
\item $\mathcal{S}^{h}_{6}=T_{s}$ contains the type of depletion solution used.
\item $\mathcal{S}^{h}_{7}=T_{b}$ contains the type of burnup considered.
\item $\mathcal{S}^{h}_{8}=N_{I}$ contains the number of isotopes.
\item $\mathcal{S}^{h}_{9}=G$ contains the number of transport groups.
\item $\mathcal{S}^{h}_{10}=N_{r}$ contains the number of regions.
\item $\mathcal{S}^{h}_{11}=N_{F}$ contains the number of fuel types.
\end{itemize}
The fuel directory name $\mathsf{FUEL}_{i,j}$ associated with fuel type $F_{i,j}$ is composed using the following
FORTRAN instruction:
\begin{quote}
\verb|WRITE(|$\mathsf{FUEL}$\verb|,'(A4,I8.8)') |\verb|'FUEL'|, $F_{i,j}$
\end{quote}
This directory will contain the initial isotopic content of this fuel type. The cell directory name
$\mathsf{CELL}_{i,j}$ associated with $C_{i,j}$ is composed using the following FORTRAN instruction:
\begin{quote}
\verb|WRITE(|$\mathsf{CELL}$\verb|,'(A4,I8.8)') |\verb|'CELL'|, $C_{i,j}$
\end{quote}
This directory will contain the value of the local parameters associated with cell $C_{i,j}$ as well as
the current isotopic content of this cell.
The identification number $C_{i,j}$ associated with channel $j$ and bundle $i$ can be seen as the serial number of the
bundle located at a position in space identified by $(i,j)$. It is automatically managed by the \moc{HST:}
module.\cite{Marleau2004a} For a fresh core $C_{i,j}=n$ where $n$ represents the cell order definition in the input
file. Upon refueling, some bundles in channel $k$ of the core are displaced from region $(l,k)$ to
$(m,k)$, new bundles are introduced at location $(l,k)$ and old bundles removed from location $(m,k)$. If one assumes
that $C^{\mathrm{NEW}}$ and $C^{\mathrm{OLD}}$ represents the value of $C$ after and before refueling then we will
have:
\begin{eqnarray*}
C^{\mathrm{NEW}}_{m.k}&=&C^{\mathrm{OLD}}_{l,k} \\
C^{\mathrm{NEW}}_{l,k}&=&C^{\mathrm{FRESH}}_{m,k}
\end{eqnarray*}
\noindent where $C^{\mathrm{FRESH}}_{m,k}$ represent a fresh fuel cell. The local parameters and burnup power density of the
fuel cell previously located at $(m,k)$ are preserved and the fresh fuel isotopic densities is that provided in
$F_{m,k}$, the fuel type associated with $C^{\mathrm{FRESH}}_{m,k}$.
\subsubsection{The fuel type sub-directory}\label{sect:historydirfuel}
Each fuel sub-directory $\mathsf{FUEL}_{i,j}$ contains the following information
\begin{DescriptionEnregistrement}{Fuel type sub-directory}{7.0cm}
\RealEnr
{FUELDEN-INIT}{$2$}{}
{array containing the initial density of heavy element in the fuel $\rho_{f}$ in g/cm$^{3}$ and the initial linear
density of heavy element in the fuel $m_{f}$ in g/cm.}
\CharEnr
{ISOTOPESUSED}{($N_{I}$)$*12$}
{array containing the name of isotopes used in this fuel type}
\IntEnr
{ISOTOPESMIX\blank{1}}{$N_{I}$}
{array containing the mixture associated with each isotopes in this fuel type}
\RealEnr
{ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$}
{array $\rho_{i}$ containing the density of each isotopes}
\end{DescriptionEnregistrement}
\subsubsection{The cell type sub-directory}\label{sect:historydircell}
Each cell isotopic sub-directory $\mathsf{CELL}_{i,j}$ contains the following information
\begin{DescriptionEnregistrement}{Cell sub-directory}{7.0cm}
\RealEnr
{FUELDEN-INIT}{$2$}{}
{array containing the initial density of heavy element in the fuel $\rho_{f}$ in g/cm$^{3}$ and the initial linear
density of heavy element in the fuel $m_{f}$ in g/cm.}
\RealEnr
{PARAMLOCALBR}{$N_{l}$}{}
{array $V^{B}_{l}$ containing the value of the local parameters before refueling}
\RealEnr
{PARAMLOCALAR}{$N_{l}$}{}
{array $V^{A}_{l}$ containing the value of the local parameters after refueling}
\RealEnr
{PARAMBURNTBR}{2}{}
{array containing the depletion time $T^{B}$ in days and the burnup power rate $P^{B}$ in kW/kg before refueling}
\RealEnr
{PARAMBURNTAR}{2}{}
{array containing the depletion time $T^{A}$ in days and the burnup power rate $P^{A}$ in kW/kg after refueling}
\RealEnr
{DEPL-PARAM\blank{2}}{3}{}
{array containing the time step $T$ in days, the burnup $B$ in kWd/kg and the irradiation $w$ in n/kb currently
reached by the fuel in this cell}
\RealEnr
{ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$}
{array $\rho_{i}$ containing the density of each isotopes}
\end{DescriptionEnregistrement}
\clearpage
|