summaryrefslogtreecommitdiff
path: root/doc/IGE344/SectAFM.tex
blob: cdd4e8bd09cf5cc5bf09cd838aa81888322bb48a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
\subsection{The \moc{AFM:} module}

The \moc{AFM:} module is used to create an extended \dds{macrolib} 
containing set of interpolated nuclear properties
from a feedback model database.\cite{sissaoui}
The \dds{database} information are obtained by previous DRAGON calculations
using module \moc{CFC:}.\cite{dragstruc}

There are two possible utilizations:
\begin{itemize}
\item Construction of an extended \dds{macrolib} for fuel properties 
directly from \dds{database} information with respect to local parameters
contained in the fuel map object or directly input.
\item Construction of an extended \dds{macrolib} containing only one set
of cross sections derivated from the \dds{database} information. 
Properties can be obtained for fuel or reflector.
\end{itemize}

The calling specifications are:

\begin{DataStructure}{Structure \moc{AFM:}}
\dusa{MACRO} \moc{:=} \moc{AFM:} $[$ \dusa{MACRO} $]$ \dusa{DBASE} 
$[$ \dusa{MAPFL} $]$
\moc{::} \dstr{descafm}
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmmmm}

\item[\dusa{MACRO}] \texttt{character*12} name of 
the extended \dds{macrolib}. The \dds{macrolib} can be in modification
mode.

\item[\dusa{DBASE}] \texttt{character*12} name of the \dds{database}
object containing fuel properties with respect to local parameters.

\item[\dusa{MAPFL}] \texttt{character*12} name of the \dds{map} 
object containing fuel regions description and burnup
informations. This file is only required when a \dds{MACRO} is created
for fuel area.

\item[\dstr{descafm}] structure containing the data to module \moc{AFM:}.

\end{ListeDeDescription}

\vskip 0.2cm

\subsubsection{Input data to the \moc{AFM:} module}

\begin{DataStructure}{Structure \dstr{descafm}}
$\{$ \moc{MAP} $|$ \moc{MCR} \dusa{mmix} $\}$ 
\moc{INFOR} \dusa{NAMDB} \\
\moc{DNAME} \dusa{ntyp} ( \dusa{NAMTYP}(i), i=1,\dusa{ntyp} ) \\
\moc{REFT} ( \dusa{imix}(i) \dusa{NAMTYP}(i), i=1,\dusa{ntyp}  ) \\
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
$[$ \moc{FIXP} $\{$ \moc{INIT} $|$ \dusa{pow} $\}~]$ \\
$[~\{$ \moc{PWF} $|$ \moc{NPWF} $\}~]$ \\
$[$ \moc{TFUEL} \dusa{tfuel} $]$ \\
$[$ \moc{TCOOL} \dusa{tcool} $]$ \\
$[$ \moc{TMOD} \dusa{tmod} $]$ \\
$[$ \moc{BORON} \dusa{nB} $]$ \\
$[$ \moc{RDCL} \dusa{dcool} $]$ \\
$[$ \moc{RDMD} \dusa{dmod} $]$ \\
$[$ \moc{PUR} \dusa{purity} $]$ \\
$[$ \moc{BURN} \dusa{bval} $]$ \\
$[$ $\{$ \moc{XENON} \dusa{nXe} $|$ \moc{XEREF} $\}$ $]$ \\
$[$ $\{$ \moc{NEP} \dusa{nNp} $|$ \moc{NREF} $\}$ $]$ \\
$[$ \moc{SAM} \dusa{nSm} $]$ \\
$[$ \moc{IMET} \dusa{imet} $]$ \\
$[$ \moc{BLIN} $]$ \\
;
\end{DataStructure}

\noindent where
\begin{ListeDeDescription}{mmmmmmmm}

\item[\moc{MAP}] keyword to specify that a \dds{macrolib} for fuel properties
will be computed.

\item[\moc{MCR}] keyword to specify that a \dds{macrolib} containing only
one non-zero mixture will be created.

\item[\dusa{mmix}] maximum number of mixtures in the \dds{macrolib}.

\item[\moc{INFOR}] keyword to specify the data base name.

\item[\dusa{NAMDB}] \texttt{character*72} title of the database as it has been
created.

\item[\moc{DNAME}] keyword to specify the number of fuel types and their
names as stored in the data base.

\item[\dusa{ntyp}] number of fuel types. For \moc{MCR} option, \dusa{ntyp}
must be 1.

\item[\dusa{NAMTYP}(i)] \texttt{character*12} name of the directory where each
fuel type information has been stored.
\item[\moc{REFT}] keyword to specify a number associated with
a fuel type name.

\item[\dusa{imix}(i)] fuel type index as specified for the fuel map or a
non-zero mixture number for the single-property {sc macrolib}.

\item[\moc{EDIT}] keyword used to set \dusa{iprint}.

\item[\dusa{iprint}] index used to control the printing in module {\tt
AFM:}. =0 for no print(default value); =1 for minimum printing; 
larger values produce increasing amounts of output.

\item[\moc{FIXP}] keyword used to set the power used for cross-section interpolation.

\item[\moc{INIT}] a distributed beginning-of-transient bundle power in kW is used. This power distribution has to be pre-calculated 
in the \moc{FLPOW:} module using the \moc{INIT} keyword.

\item[\dusa{pow}] uniform bundle power in kW. If this data is omitted, the
reference value in the data base is used or the bundle powers present
in a \dds{map}. The reference value is 615 kW if none were provided at the
database computation time.

\item[\moc{PWF}] keyword used to activate power bundle feedback on fuel properties using powers
recovered from {\tt 'BUND-PW'} record in \dusa{MAPFL}. This is the default option
if \moc{MAP} is selected.

\item[\moc{NPWF}] keyword used to deactivate \moc{PWF} feedback. This is the only possible option
if \moc{MCR} is selected.

\item[\moc{TFUEL}] keyword used to set \dusa{tfuel}.

\item[\dusa{tfuel}] fuel temperature in K. If this data is omitted and
the bundle powers present in a \dds{map}, fuel temperatures are 
computed with respect to powers.
If this data is omitted and there is no bundle power, the
reference value in the data base is used, where it is 941.29 K if none were provided at the database computation time.

\item[\moc{TCOOL}] keyword used to set \dusa{tcool}.

\item[\dusa{tcool}] coolant temperature in K. If this data is omitted, the
reference value in the data base is used. The reference value is 560.66 K if none were provided at the database computation time.

\item[\moc{TMOD}] keyword used to set \dusa{tmod}.

\item[\dusa{tmod}] moderator temperature in K. If this data is omitted, the
reference value in the data base is used. The reference value is 345.66 K if none were provided at the database computation time.

\item[\moc{BORON}] keyword used to set \dusa{nB}.

\item[\dusa{nB}] Boron concentration in ppm. If this data is omitted, the
reference value in the data base is used. The reference value is 0.0 ppm. See note below for inside equations.

\item[\moc{RDCL}] keyword used to set \dusa{dcool}.

\item[\dusa{dcool}] coolant density in $g/cm^3$.
If this data is omitted, the
reference value in the data base is used. The reference value is 
0.81212 $g/cm^3$ if none were provided at the database computation time.

\item[\moc{RDMD}] keyword used to set \dusa{dmod}.

\item[\dusa{dmod}] moderator density in $g/cm^3$.
If this data is omitted, the
reference value in the data base is used. The reference value is 
1.082885 $g/cm^3$ if none were provided at the database computation time.

\item[\moc{PUR}] keyword used to set \dusa{purity}.

\item[\dusa{purity}] moderator purity in atm\%.
If this data is omitted, the
reference value in the data base is used. The reference value is 
99.911 atm\% if none were provided at the database computation time.

\item[\moc{BURN}] keyword used to set \dusa{bval}. This option is
valid only when \moc{MCR} is used and can not be omitted.

\item[\dusa{bval}] fuel burnup in MWd/t. This value must be positive. 

\item[\moc{XENON}] keyword used to set \dusa{nXe}.

\item[\dusa{nXe}] Xenon concentration in $10^{24} at/cm^3$. 
This concentration will be applied to every bundle.

\item[\moc{XEREF}] keyword used to specify that the Xenon concentrations
as computed with DRAGON will be taken. If this option is omitted and \dds{map} 
contains bundle fluxes, new Xenon concentrations will be computed and used.
\item[\moc{NEP}] keyword used to set \dusa{nNp}.

\item[\dusa{nNp}] Neptunium concentration in $10^{24} at/cm^3$. 

\item[\moc{XEREF}] keyword used to specify that the Neptunium concentrations
as computed with DRAGON will be taken. If this option is omitted and \dds{map} 
contains bundle fluxes, new Neptunium concentrations will be computed and used.

\item[\moc{SAM}] keyword used to set \dusa{nSm}.

\item[\dusa{nSm}] Samarium concentration in $10^{24} at/cm^3$. 
If this data is omitted, bundle concentrations as computed by DRAGON is used.

\item[\moc{IMET}] keyword used to set \dusa{imet}.

\item[\dusa{imet}] interpolation type for time-average calculations.
\dusa{imet} = 1: using Lagrange approximations; \dusa{imet} = 2: using 
spline approximations; \dusa{imet} = 3: using Hermite approximations
(default value).

\item[\moc{BLIN}] keyword used to linear interpolation for burnup instead of the Lagrangian
interpolation method.

\end{ListeDeDescription}

\vskip 0.2cm

Note: The concentration of boron is provided in terms of $10^{24}at/cm^3$ in the database. However, the usual units are $ppm (wt)$ of Boron. Thus, the input asks for $ppm$ of Boron ($n_B$), and automatically transform the units into $10^{24}at/cm^3$ using the following equations:
\begin{eqnarray*}
\rho_B(g/cm^3) & = & n_B \ . \ \rho_{\rm water}(g/cm^3)\\
 {\rm and} & & \\
 \rho_{\rm water}(at/cm^3) & = & 3 \rho_{\rm water}(molecule/cm^3) =\frac{3.N}{M_{\rm water}} \rho_{\rm water}(g/cm^3)\\
 \rho_{B}(at/cm^3) & = & \rho_{B}(molecule/cm^3) =\frac{N}{M_{B}} \rho_{}(g/cm^3)\\
 {\rm thus} & & \\
 \rho_{B}(10^{24}at/cm^3) & = &  n_B \ . \ \frac{M_{\rm water}}{3.M_{B}} \rho_{\rm water}(10^{24}at/cm^3) 
\end{eqnarray*}
where $M$ molar mass and $N$ the Avogadro number.

They are many options on how to use the module {\tt AFM:} for its different purposes. A compact summary is presented on Tab. \ref{tabAFM}.

\begin{table}[!h]
\caption{AFM options summary}
\begin{center}
\begin{tabular}{|p{0.15\textwidth}|p{0.28\textwidth}|p{0.45\textwidth}|}
\hline
Option & Keywords & Parameter values \\
\hline
MCR  & REFT & Nominal values \\
  & REFT + \{TFUEL, TCOOL, ...\} & Nominal values except for specified parameters \\
\hline
TAB & REFT & Nominal values except for TFUEL parameter which is computed according to the Rozon correlation using nominal power\\
  & REFT + \{TFUEL, TCOOL, ...\} & Same as above except for specified parameters which will have a constant value \\
\hline
MAP with local parameters & REFT & Nominal values except for local parameters included in MAP\\
  & REFT + \{TFUEL, TCOOL, ...\} & Same as above except for specified parameters which will have a constant value\\
\hline
MAP without local parameters & REFT & Nominal values except for TFUEL parameter which is computed according to the Rozon correlation if power distribution is available\\
  & REFT + \{TFUEL, TCOOL, ...\} & Same as above except for specified parameters which will have a constant value\\
\hline

\end{tabular}
\end{center}
\label{tabAFM}
\end{table}

The Rozon correlation for fuel temperature as a function of bundle power is:
$$
T_{\rm fuel}= T_{\rm cool} + 0.476 \, P + 2.267 \, P^2 \times 10^{-4}
$$
where $P$ is in kW and temperatures are in Kelvin.

\clearpage