summaryrefslogtreecommitdiff
path: root/doc/IGE335/Section5.04.tex
blob: e08c18c59cc6ddd0bcb0c972c5737ef4e6bb93a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\subsection{Macroscopic cross sections examples}\label{sect:ExMACROLIB}

The sample test cases we will consider here use the \moc{MAC:} module to enter
macroscopic cross sections directly into DRAGON. They are numbered successively
from \tst(TCM01) to \tst(TCM08).

\subsubsection{\tst(TCM01) -- Annular region}

\begin{figure}[h!]  
\begin{center} 
\epsfxsize=6cm \centerline{ \epsffile{GTCM01.eps}}
\parbox{16cm}{\caption{Geometry for test case \tst(TCM01) for an annular cell with
macroscopic cross sections.}\label{fig:TCM01}}    
\end{center}  
\end{figure}

This sample input is used to analyze the annular cell presented in \Fig{TCM01}.
It uses two-groups macroscopic cross sections provided directly by the user. One
type of solution is provided here, one with a complete collision probability
calculation (\moc{SYBILT:}). Note that for the second flux calculation the
initial flux distribution is taken from the existing \dds{fluxunk} structure
which already contains the flux distribution from the
\moc{SYBILT:} calculation. 

\listing{TCM01.x2m}

\subsubsection{\tst(TCM02) -- The Stankovski test case.}

\begin{figure}[h!]  
\begin{center} 
\epsfxsize=10cm \centerline{ \epsffile{GTCM02.eps}}
\parbox{14cm}{\caption{Geometry for test case \tst(TCM02).}\label{fig:TCM02}}    
\end{center}    \end{figure}

This test case represents a one group calculation of a $7\times 7$ PWR assembly.
The reaction rates obtained from DRAGON can be compared with those obtained
using the MARSYAS code.\cite{DragonPIJS2,DragonPIJS3,Stankovski} The
corresponding geometry is shown in \Fig{TCM02} where the cell numbers generated
by DRAGON are shown.

\listing{TCM02.x2m}

\subsubsection{\tst(TCM03) -- Watanabe and Maynard problem with a void region.}

\begin{figure}[h!]  
\begin{center} 
\epsfxsize=10cm \centerline{ \epsffile{GTCM03.eps}}
\parbox{14cm}{\caption{Geometry for test case \tst(TCM03).}
\label{fig:TCM03}}     \end{center}    \end{figure}

This test case is a one group problem with a central void region. This benchmark
was first proposed by  Watanabe and Maynard. Akroyd and Riyait used it to
analyze the performance of various codes.\cite{DragonPIJS2,DragonPIJS3,Akroyd}

\listing{TCM03.x2m}

\subsubsection{\tst(TCM04) -- Adjuster rod in a CANDU type supercell.}

\begin{figure}[h!]  
\begin{center} 
\epsfxsize=10cm \centerline{ \epsffile{GTCM04.eps}}
\parbox{14cm}{\caption{Geometry of the CANDU-6 supercell with stainless steel
rods.}\label{fig:TCM04}}   
\end{center}  
\end{figure}

This test case represents a two group calculation of incremental cross sections
resulting from  the insertion of stainless steel adjuster rods in a CANDU-6
supercell.

\listing{TCM04.x2m}

\subsubsection{\tst(TCM05) -- Comparison of leakage models}

This test presents various homogeneous and heterogeneous leakage models on a
simple cell.

\listing{TCM05.x2m}

\subsubsection{\tst(TCM06) -- Buckling search without fission source}

This test is for an homogeneous water cell. A buckling eigenvalue problem is
solved in the abscence of fission source for the neutron flux distribution
inside this cell.

\listing{TCM06.x2m}

\subsubsection{\tst(TCM07) -- Test of boundary conditions}

This test is for a 2--D Cartesian cell with refelctive and void boundary
conditions.

\listing{TCM07.x2m}

\subsubsection{\tst(TCM08) -- Fixed source problem with fission}

This test is for a 2--D Cartesian cell which contains both a fission and a
fixed source.

\listing{TCM08.x2m}
 
\subsubsection{\tst(TCM09) -- Solution of a 2-D fission source problem using \moc{MCCGT:}}\label{sect:ExTCM09}

This test case is for a $3\times 3$ Cartesian assembly in 2-D similar to TCM03. It is
solved using the method of cyclic characteristics.

\listing{TCM09.x2m}

\subsubsection{\tst(TCM10) -- Solution of a 2-D fixed source problem using \moc{MCCGT:}}\label{sect:ExTCM10}

This test case is for a 2--D Cartesian assembly that contains a fixed source. It is solved
using the method of cyclic characteristics.

\listing{TCM10.x2m}

\subsubsection{\tst(TCM11) -- Comparison of CP and MoC solutions}\label{sect:ExTCM11}

This test case is for a $4\times 4$ Cartesian assembly in 2-D. It is solved using the
method of cyclic characteristics and the method of collision probabilities using specular
(mirror like) boundary conditions.

\listing{TCM11.x2m}

\subsubsection{\tst(TCM12) - Solution of a 3-D problem using the \moc{MCU:}
module}\label{sect:ExTCM12}

This test case is for a simplified 3-D Cartesian assembly analyzed using the \moc{EXCELT:}. A
collisions probability solution is generated as well as two solutions using the method of
characteristics.

\listing{TCM12.x2m}

\subsubsection{\tst(TCM13) - Hexagonal assembly with hexagonal cells containing clusters}\label{sect:ExTCM13}

This test represents an example of a 2-D hexagonal assembly filled with triangular/hexagonal cells containing clusters (see \Fig{TCM13}) that can be analyzed with \moc{NXT:}.

\begin{figure}[h!]  
\begin{center} 
\parbox{10.0cm}{\epsfxsize=10cm \epsffile{GTCM13.eps}}
\parbox{14cm}{\caption{Geometry of a 2-D hexagonal assembly filled with triangular/hexagonal cells.}\label{fig:TCM13}}   
\end{center}  
\end{figure}

\listing{TCM13.x2m}

\eject