1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
\subsection{Geometries}\label{sect:ExGEOData}
In order to illustrate the use of the various geometries presented in
\Sect{GEOData}, lets us consider a few examples that can be treated
by DRAGON.
\begin{itemize}
\item 1--D Slab geometry (see \Fig{plaque}):
\begin{figure}[h!]
\begin{center}
\epsfxsize=11cm \centerline{ \epsffile{Gplaque.eps}}
\parbox{14cm}{\caption{Slab geometry with mesh-splitting}
\label{fig:plaque}}
\end{center}
\end{figure}
This geometry can be analyzed using a \moc{SYBILT:} tracking
modules:
\begin{verbatim}
PLATE := GEO: :: CAR1D 6
X- VOID X+ ALBE 1.2
MESHX 0.0 0.1 0.3 0.5 0.6 0.8 1.0
SPLITX 2 2 2 1 2 1
MIX 1 2 3 4 5 6 ;
\end{verbatim}
\item 2--D Cartesian geometry containing micro-structures (see
figure \Fig{grains}):
\begin{figure}[h!]
\begin{center}
\epsfxsize=10cm \centerline{ \epsffile{Ggrains.eps}}
\parbox{14cm}{\caption{Two-dimensional Cartesian assembly containing
micro-structures} \label{fig:grains}}
\end{center}
\end{figure}
This geometry can be analyzed only using \moc{SYBILT:}
tracking modules:
\begin{verbatim}
CARNSG := GEO: :: CAR2D 3 3
X- DIAG X+ REFL Y- SYME Y+ DIAG
MIX C1 C1 C2
C3 C2
C3
BIHET SPHE (*NG=*) 2 (* NMILG= *) 2 (* SPHERICAL MICRO-STRUCTURE *)
(* NS= *) 3 3
(* M-S-1 *) 0.0 0.1 0.2 0.3 (* M-S 2 *) 0.0 0.2 0.4 0.5
(* COMPOSITE MIXTURES *) 4 5
(* MIXTURES SURROUNDING M-S *) 1 1
(* COMPOSITE MIXTURE 4 FRACT *) 0.4 0.0
(* REAL MIXTURE CONTENT M-S-1 *) 3 1 3
(* COMPOSITE MIXTURE 5 FRACT *) 0.2 0.1
(* REAL MIXTURE CONTENT M-S-1 *) 1 2 1
(* REAL MIXTURE CONTENT M-S-2 *) 2 3 1
::: C1 := GEO: CAR2D 1 1 (* HOMOGENEOUS CELL WITH M-S *)
MESHX 0.0 1.45 MESHY 0.0 1.45 MIX 4 ;
::: C2 := GEO: C1 (* HOMOGENEOUS CELL WITHOUT M-S *)
MIX 1 ;
::: C3 := GEO: CARCEL 2 (* CELL WITH M-S TUBE *)
MESHX 0.0 1.45 MESHY 0.0 1.45
RADIUS 0.0 0.6 0.7
MIX 5 2 1 ;
;
\end{verbatim}
\item Cylindrical and Cartesian cluster geometry (see \Fig{grappe}):
\begin{figure}[h!]
\begin{center}
\epsfxsize=10cm \centerline{ \epsffile{Ggrappe.eps}}
\parbox{14cm}{\caption{Cylindrical cluster geometry}\label{fig:grappe}}
\end{center}
\end{figure}
The first two geometry, namely {\tt ANNPIN} and {\tt CARPIN} can be analyzed
using a \moc{EXCELT:} tracking modules since the pins in
the clusters are all located between annular region. For the last two geometries,
{\tt ANNSPIN} and {\tt CARSPIN}, which are based on {\tt ANNPIN} and {\tt
CARPIN} respectively, they only be treated by the
\moc{EXCELT:} tracking modules since the pins in the clusters intersect the
annular regions defined by the \moc{SPLITR} option. This later option which was
selected to ensure a uniform thickness of 0.25 cm for each the annular region in
the final geometries.
\begin{verbatim}
ANNPIN := GEO: :: TUBE 3
R+ REFL RADIUS 0.0 0.75 2.75 4.75
MIX 2 1 3
CLUSTER C1 C2
::: C1 := GEO: TUBE 2
MIX 2 4 RADIUS 0.0 0.3 0.6
NPIN 4 RPIN 1.75 APIN 0.523599 ;
::: C2 := GEO: C1
NPIN 2 RPIN 3.75 APIN 1.570796 ;
;
CARPIN := GEO: :: CARCEL 3
X- REFL X+ REFL Y- REFL Y+ REFL
MESHX 0.0 10.0 MESHY -5.0 5.0
RADIUS 0.0 0.75 2.75 4.75
MIX 2 1 3 3
CLUSTER C1 C2
::: C1 := GEO: TUBE 2
MIX 2 4 RADIUS 0.0 0.3 0.6
NPIN 4 RPIN 1.75 APIN 0.523599 ;
::: C2 := GEO: C1
NPIN 2 RPIN 3.75 APIN 1.570796 ;
;
ANNSPIN := GEO: ANNPIN ::
SPLITR 3 8 8 ;
CARSPIN := GEO: CARPIN ::
SPLITR 3 8 8 ;
\end{verbatim}
Note that even if \moc{MESHX} and \moc{MESHY} differ in {\tt CARPIN}, the
annular regions and pins will still be localized with respect to the center of
the cell located at $(x,y)=(5.0,0.0)$ cm.
\item 2--D hexagonal geometry (see \Fig{hexcel}):
\begin{figure}[h!]
\begin{center}
\epsfxsize=10cm \centerline{ \epsffile{Ghexcel.eps}}
\parbox{14cm}{\caption{Two-dimensional hexagonal geometry}
\label{fig:hexcel}}
\end{center}
\end{figure}
This geometry can be analyzed using the \moc{SYBILT:} and
\moc{EXCELT:} tracking modules:
\begin{verbatim}
HEXAGON := GEO: :: HEX 12
HBC S30 ALBE 1.6
SIDE 1.3
MIX 1 1 1 2 2 2 3 3 3 4 5 6
;
\end{verbatim}
\item 3--D Cartesian supercell (see \Fig{supercel}):
\begin{figure}[h!]
\begin{center}
\epsfxsize=10cm \centerline{ \epsffile{Gsupercel.eps}}
\parbox{14cm}{\caption{Three-dimensional Cartesian
super-cell}\label{fig:supercel}} \end{center}
\end{figure}
This geometry can only be analyzed using the
\moc{EXCELT:} tracking modules:
\begin{verbatim}
SUPERCELL := GEO: :: CAR3D 4 4 3
X- REFL X+ REFL
Y- REFL Y+ REFL
Z- REFL Z+ REFL
MIX A1 C1 D1 A3 A2 C2 D2 D2 A2 C2 C2 C2 A2 C2 C2 C2
C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4
C3 C3 D3 A4 C4 C4 D4 D4 C4 C4 C4 C4 C4 C4 C4 C4
::: C1 := GEO: CAR3D 1 1 1
MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0
MIX 1 ;
::: C2 := GEO: C1 MESHY 0.0 1.0 ;
::: C3 := GEO: C1 MESHZ 0.0 1.0 ;
::: C4 := GEO: C2 MESHZ 0.0 1.0 ;
::: D1 := GEO: C1 MIX 2 ;
::: D2 := GEO: C2 MIX 2 ;
::: D3 := GEO: C3 MIX 2 ;
::: D4 := GEO: C4 MIX 2 ;
::: A1 := GEO: CARCELY 2 1
MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0
RADIUS 0.0 0.4 0.45
MIX 3 4 1 ;
::: A2 := GEO: A1 MESHY 0.0 1.0 ;
::: A3 := GEO: CARCELZ 2 1
MESHX 0.0 1.0 MESHY 0.0 1.5 MESHZ 0.0 2.0
RADIUS 0.0 0.3 0.35
MIX 5 6 1 ;
::: A4 := GEO: A3 MESHZ 0.0 1.0 ;
;
\end{verbatim}
\item Multicell geometry in a 2--D hexagonal lattice (see \Fig{multihex}).
\begin{figure}[h!]
\begin{center}
\epsfxsize=14cm \centerline{ \epsffile{Gmultihex.eps}}
\parbox{14cm}{\caption{Hexagonal multicell lattice geometry}
\label{fig:multihex}}
\end{center}
\end{figure}
Here we are considering an infinite lattice having two types of cells such
that
\begin{align*}
\begin{pmatrix}\text{pource}(1) \\ \text{pource}(2) \end{pmatrix}&=
\begin{pmatrix}1/3 \\ 2/3 \\ \end{pmatrix}\ \ \ \ \text{ and} \ \ \ \
\begin{pmatrix} \text{procel}(1,1) & \text{procel}(1,2) \\ \text{procel}(2,1) & \text{procel}(2,2) \\ \end{pmatrix}=
\begin{pmatrix}0 & 1 \\ 1/2 & 1/2 \\ \end{pmatrix}
\end{align*}
This lattice, can be represented either in a {\sl do-it-yourself} type geometry
({\tt HEXDIY}) or directly ({\tt HEXDIR}):
\begin{verbatim}
HEXDIY := GEO: :: GROUP 2
POURCE 0.3333333 0.66666667
PROCEL 0.0 1.0
0.5 0.5
MIX C1 C2
::: C1 := GEO: TUBE 1
RADIUS 0.0 1.1822093 MIX 1 ;
::: C2 := GEO: C1 MIX 2 ;
;
HEXDIR := GEO: :: HEX 2
HBC S30 SYME SIDE 1.3 MIX 1 2 ;
\end{verbatim}
The first lattice can only be analyzed using the \moc{SYBILT:} tracking module,
while the second lattice can be analyzed using all the tracking
modules of DRAGON.
\end{itemize}
\eject
|