blob: ba4f7064d88ca064423277c9f257e8b9078a4bbe (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
\subsection{Scattering cross sections}\label{sect:ExXSData}
In DRAGON, the angular dependence of the
scattering cross section is expressed in a Legendre series expansion of
the form:
$$
\Sigma_{s}(\Omega\cdot\Omega')=\Sigma_{s}(\mu)=
\sum_{l=0}^{L}\left({{(2l+1)}\over{4\pi}}\right)\Sigma_{s,l}P_{l}(\mu).
$$
Since the Legendre polynomials satisfy the following
orthogonality conditions:
$$
\int_{-1}^{1} d\mu P_{l}(\mu)P_{m}(\mu) =
\left({{2\delta_{l,m}}\over{(2l+1)}}\right),
$$
we will have
$$
\Sigma_{s,l}=\int_{-1}^{1}d\mu\int_{0}^{2\pi}d\varphi\Sigma_{s}(\mu)P_{l}(\mu)=
2\pi \int_{-1}^{1}d\mu\Sigma_{s}(\mu)P_{l}(\mu).
$$
Let us now consider the following three-group (\dusa{ngroup}=3) isotropic and
linearly anisotropic scattering cross sections ($L$=\dusa{naniso}=2) given by:
\begin{center}
\begin{tabular}{|llccc|}\hline\hline
$l$ & $g$ & $\Sigma_{s,l}^{g\to 1}$ (\xsunit)
& $\Sigma_{s,l}^{g\to 2}$ (\xsunit)
& $\Sigma_{s,l}^{g\to 3}$ (\xsunit) \\ \hline
& 1 & 0.90 & 0.80 & 0.00 \\
0 & 2 & 0.00 & 0.70 & 0.60 \\
& 3 & 0.00 & 0.30 & 0.40 \\ \hline
& 1 & 0.09 & 0.05 & 0.08 \\
1 & 2 & 0.00 & 0.07 & 0.06\\
& 3 & 0.03 & 0.00 & 0.04 \\ \hline\hline
\end{tabular}
\end{center}
\noindent
In DRAGON this scattering cross section must be entered as
\begin{verbatim}
SCAT (* L=0 *) 1 1 (* 3->1 *) (* 2->1 *) (* 1->1 *) 0.90
3 3 (* 3->2 *) 0.30 (* 2->2 *) 0.70 (* 1->2 *) 0.80
2 3 (* 3->3 *) 0.40 (* 2->3 *) 0.60 (* 1->3 *)
SCAT (* L=1 *) 3 3 (* 3->1 *) 0.03 (* 2->1 *) 0.00 (* 1->1 *) 0.09
2 2 (* 3->2 *) (* 2->2 *) 0.07 (* 1->2 *) 0.05
3 3 (* 3->3 *) 0.04 (* 2->3 *) 0.06 (* 1->3 *) 0.08
\end{verbatim}
|