summaryrefslogtreecommitdiff
path: root/doc/IGE335/Section3.04_bivac.tex
blob: 5b66c037055e860b5d6558e7d2ae5592585a6225 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
\subsubsection{The {\tt BIVACT:} tracking module}\label{sect:BIVACData}

The {\tt BIVACT:} module provides an implementation of the diffusion or simplified $P_n$ method. The {\tt BIVACT:} module can only process
1D/2D regular geometries of type \moc{CAR1D}, \moc{CAR2D} and \moc{HEX}. The geometry is analyzed and
a LCM object with signature {\tt L\_BIVAC} is created with the tracking information.

\vskip 0.2cm

The calling specification for this module is:

\begin{DataStructure}{Structure \dstr{BIVACT:}}
\dusa{TRKNAM}
\moc{:=} \moc{BIVACT:} $[$ \dusa{TRKNAM} $]$ 
\dusa{GEONAM} \moc{::}  \dstr{desctrack} \dstr{descbivac}
\end{DataStructure}

\noindent  where
\begin{ListeDeDescription}{mmmmmmm}

\item[\dusa{TRKNAM}] {\tt character*12} name of the \dds{tracking} data
structure that will contain region volume and surface area vectors in
addition to region identification pointers and other tracking information.
If \dusa{TRKNAM} also appears on the RHS, the previous tracking 
parameters will be applied by default on the current geometry.

\item[\dusa{GEONAM}] {\tt character*12} name of the \dds{geometry} data
structure.

\item[\dstr{desctrack}] structure describing the general tracking data (see
\Sect{TRKData})

\item[\dstr{descbivac}] structure describing the transport tracking data
specific to \moc{BIVACT:}.

\end{ListeDeDescription}

\vskip 0.2cm

The \moc{BIVACT:} specific tracking data in \dstr{descbivac} is defined as

\begin{DataStructure}{Structure \dstr{descbivac}}
$[$ $\{$ \moc{PRIM} $[$ \dusa{ielem} \dusa{icol} $]$ \\
~~~~$|$ \moc{DUAL} $[$ \dusa{ielem} \dusa{icol} $]$ \\
~~~~$|$ \moc{MCFD} $\}~]$ \\
$[~\{$ \moc{PN} $|$ \moc{SPN} $\}$ $[$ \moc{DIFF} $]$ \dusa{nlf} $[$ \moc{SCAT} \dusa{iscat} $]~[$ \moc{VOID} \dusa{nvd}~$]~]$ \\
{\tt ;}
\end{DataStructure}

\noindent where

\begin{ListeDeDescription}{mmmmmmm}

\item[\dstr{desctrack}] structure describing the general tracking data (see
\Sect{TRKData})

\item[\moc{PRIM}] keyword to set a primal finite element (classical)
discretization.

\item[\moc{DUAL}] keyword to set a mixed-dual finite element discretization. If the
geometry is hexagonal, a Thomas-Raviart-Schneider method is used.

\item[\moc{MCFD}] keyword to set a mesh-centered finite difference discretization
in hexagonal geometry.

\item[\dusa{ielem}] order of the finite element representation.  The values
permitted are: 1 (linear polynomials), 2 (parabolic polynomials), 3 (cubic
polynomials) or 4 (quartic polynomials). By default \dusa{ielem}=1.

\item[\dusa{icol}] type of quadrature used to integrate the mass matrices. The
values permitted are: 1 (analytical integration), 2  (Gauss-Lobatto quadrature)
or 3 (Gauss-Legendre quadrature). By default \dusa{icol}=2. The analytical
integration corresponds to classical finite elements; the Gauss-Lobatto
quadrature corresponds to a variational or nodal type collocation and the
Gauss-Legendre quadrature corresponds to superconvergent finite elements.

\item[\moc{PN}] keyword to set a spherical harmonics ($P_n$) expansion of the flux.\cite{nse2005} This option is currently limited to 1D
and 2D Cartesian geometries.

\item[\moc{SPN}] keyword to set a simplified spherical harmonics ($SP_n$) expansion
of the flux.\cite{nse2005,ane10a} This option is currently available with 1D and 2D Cartesian geometries
and with 2D hexagonal geometries.

\item[\moc{DIFF}] keyword to force using $1/3D^{g}$ as $\Sigma_1^{g}-\Sigma_{{\rm s}1}^{g}$ cross sections. A $P_1$ or $SP_1$ method
will therefore behave as diffusion theory.

\item[\dusa{nlf}] order of the $P_n$ or $SP_n$ expansion (odd number). Set to zero for diffusion theory (default value).

\item[\moc{SCAT}] keyword to limit the anisotropy of scattering sources.

\item[\dusa{iscat}] number of terms in the scattering sources. \dusa{iscat} $=1$ is used for
isotropic scattering in the laboratory system. \dusa{iscat} $=2$ is used for
linearly anisotropic scattering in the laboratory system. The default value is set to $n+1$
in $P_n$ or $SP_n$ case.

\item[\moc{VOID}] key word to set the number of base points in the Gauss-Legendre quadrature used to integrate
void boundary conditions if \dusa{icol} $=3$ and \dusa{n} $\ne 0$.

\item[\dusa{nvd}] type of quadrature. The values
permitted are: 0 (use a (\dusa{n}$+2$)--point quadrature consistent with $P_{{\rm n}}$ theory),
1 (use a (\dusa{n}$+1$)--point quadrature consistent with $S_{{\rm n}+1}$ theory),
2 (use an analytical integration of the void boundary conditions). By default \dusa{nvd}=0.

\end{ListeDeDescription}

Various finite element approximations can be obtained by combining different
values of \dusa{ielem} and \dusa{icol}:

\begin{itemize}

\item {\tt PRIM 1 1~:} Linear finite elements;

\item {\tt PRIM 1 2~:} Mesh corner finite differences;

\item {\tt PRIM 1 3~:} Linear superconvergent finite elements;

\item {\tt PRIM 2 1~:} Quadratic finite elements;

\item {\tt PRIM 2 2~:} Quadratic variational collocation method;

\item {\tt PRIM 2 3~:} Quadratic superconvergent finite elements;

\item {\tt PRIM 3 1~:} Cubic finite elements;

\item {\tt PRIM 3 2~:} Cubic variational collocation method;

\item {\tt PRIM 3 3~:} Cubic superconvergent finite elements;

\item {\tt PRIM 4 2~:} Quartic variational collocation method;

\item {\tt DUAL 1 1~:} Mixed-dual linear finite elements;

\item {\tt DUAL 1 2~:} Mesh centered finite differences;

\item {\tt DUAL 1 3~:} Mixed-dual linear superconvergent finite elements

(numerically equivalent to {\tt PRIM~1~3});

\item {\tt DUAL 2 1~:} Mixed-dual quadratic finite elements;

\item {\tt DUAL 2 2~:} Quadratic nodal collocation method;

\item {\tt DUAL 2 3~:} Mixed-dual quadratic superconvergent finite elements

(numerically equivalent to {\tt PRIM~2~3});

\item {\tt DUAL 3 1~:} Mixed-dual cubic finite elements;

\item {\tt DUAL 3 2~:} Cubic nodal collocation method;

\item {\tt DUAL 3 3~:} Mixed-dual cubic superconvergent finite elements

(numerically equivalent to {\tt PRIM~3~3});

\item {\tt DUAL 4 2~:} Quartic nodal collocation method;

\end{itemize}
\eject