1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
|
\subsection{The {\tt GEO:} module}\label{sect:GEOData}
The \moc{GEO:} module is used to create or modify a geometry. The geometry
definition module in DRAGON permits all the characteristics (coordinates,
region mixture and boundary conditions) of a simple or complex
geometry to be specified. The method used to specify the geometry is independent
of the discretization module to be used subsequently. Each geometry is stored in
the form of a \dds{geometry} data structure under its given name. It is
always possible to modify an existing geometry or copy it under a new name.
The calling specifications are:
\begin{DataStructure}{Structure \dstr{GEO:}}
$\{$ \\
\hskip 0.3cm \dusa{GEONAM} \moc{:=} \moc{GEO:} $\{$ \dusa{GEONAM} $|$ \dusa{OLDGEO} $\}$
\moc{::} \dstr{descgcnt} \\
$|$ \\
\hskip 0.3cm \dusa{GEONAM} \moc{:=} \moc{GEO:} \moc{::} \dstr{descgtyp} \dstr{descgcnt} \\
$\}$
\end{DataStructure}
\noindent
\noindent where
\begin{ListeDeDescription}{mmmmmmmm}
\item[\dusa{GEONAM}] {\tt character*12} name of the \dds{geometry} created or
modified.
\item[\dusa{OLDGEO}] {\tt character*12} name of a read-only \dds{geometry}.
The type and all the characteristics of \dusa{OLDGEO} will be copied onto \dusa{GEONAM}
before this later geometry is modified.
\item[\dstr{descgtyp}] structure describing the geometry type of
\dusa{GEONAM} (see \Sect{descgeo}).
\item[\dstr{descgcnt}] structure describing the characteristics of a geometry
(see \Sect{descgeo}).
\end{ListeDeDescription}
\subsubsection{Data input for module {\tt GEO:}}\label{sect:descgeo}
Structures \dstr{descgtyp} and \dstr{descgcnt} are used to define respectively
the type of geometry that will be define and the contents of this geometry
(dimensions, materials, boundary conditions). The module \moc{GEO:} can be
recursively called from
\dstr{descgcnt} as an embedded module, in order to define sub-geometries:
\begin{DataStructure}{Structure \dstr{descgtyp}}
$\{$ \moc{VIRTUAL} $|$ \\
\moc{HOMOGE} $|$\\
\moc{SPHERE} \dusa{lr} $|$ \\
\moc{CAR1D} \dusa{lx} $|$ \\
\moc{CAR2D} \dusa{lx} \dusa{ly} $|$\\
\moc{CAR3D} \dusa{lx} \dusa{ly} \dusa{lz} $|$ \\
\moc{TUBE} \dusa{lr} $[$ \dusa{lx} \dusa{ly} $]$ $|$\\
\moc{TUBEX} \dusa{lr} $\{$ \dusa{lx} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$\\
\moc{TUBEY} \dusa{lr} $\{$ \dusa{ly} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$\\
\moc{TUBEZ} \dusa{lr} $\{$ \dusa{lz} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\
\moc{RTHETA} \dusa{lr} \dusa{lz} $|$ \\
\moc{HEX} \dusa{lh} $|$ \\
\moc{HEXZ} \dusa{lh} \dusa{lz} $|$ \\
\moc{HEXT} \dusa{nhr} $|$ \\
\moc{HEXTZ} \dusa{nhr} \dusa{lz} $|$ \\
\moc{CARCEL} \dusa{lr} $[$ \dusa{lx} \dusa{ly} $]$ $|$\\
\moc{CARCELX} \dusa{lr} $\{$ \dusa{lx} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\
\moc{CARCELY} \dusa{lr} $\{$ \dusa{ly} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\
\moc{CARCELZ} \dusa{lr} $\{$ \dusa{lz} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\
\moc{HEXCEL} \dusa{lr} $|$ \\
\moc{HEXCELZ} \dusa{lr} \dusa{lz} $|$ \\
\moc{HEXTCEL} \dusa{lr} \dusa{nhr}$|$ \\
\moc{HEXTCELZ} \dusa{lr} \dusa{nhr} \dusa{lz} $|$ \\
\moc{GROUP} \dusa{lp} $\}$
\end{DataStructure}
\begin{DataStructure}{Structure \dstr{descgcnt}}
$[$ \moc{EDIT} \dusa{iprint} $]$ \\
\dstr{descBC} \\
\dstr{descSP} \\
\dstr{descPP} \\
\dstr{descDH} \\
\dstr{descSIJ} \\
$[[$ \moc{:::} \dusa{SUBGEO} \moc{:=} \moc{GEO:} $\{$ \dstr{descgtyp} $|$
\dusa{SUBGEO} $|$
\dusa{OLDGEO} $\}$ \dstr{descgcnt}$]]$ \\
\moc{;}
\end{DataStructure}
\noindent
where
\begin{ListeDeDescription}{mmmmmmmm}
\item[\moc{VIRTUAL}] keyword to specify that a virtual geometry description
follows. This type of geometry is used to complete an assembly that has
irregular boundaries.
\item[\moc{HOMOGE}] keyword to specify that a infinite homogeneous geometry
description follows.
\item[\moc{SPHERE}] keyword to specify that a spherical geometry (concentric
spheres) description follows.
\item[\moc{CAR1D}] keyword to specify that a one dimensional plane geometry
(infinite slab) description follows.
\item[\moc{CAR2D}] keyword to specify that a two-dimensional Cartesian
geometry description follows.
\item[\moc{CAR3D}] keyword to specify that a three-dimensional Cartesian
geometry description follows.
\item[\moc{TUBE}] keyword to specify that a cylindrical geometry (infinite
tubes or cylinders) description follows. This geometry can contain an imbedded $X-Y$ Cartesian mesh.
\item[\moc{TUBEX}] keyword to specify that a polar $R-X$ cylindrical geometry
description follows. This geometry can contain an imbedded $Y-Z$ Cartesian mesh.
\item[\moc{TUBEY}] keyword to specify that a polar $R-Y$ cylindrical geometry
description follows. This geometry can contain an imbedded $Z-X$ Cartesian mesh.
\item[\moc{TUBEZ}] keyword to specify that a polar $R-Z$ cylindrical geometry
description follows. This geometry can contain an imbedded $X-Y$ Cartesian mesh.
\item[\moc{RTHETA}] keyword to specify that a polar geometry ($R-\theta$)
description follows.
\item[\moc{HEX}] keyword to specify that a two-dimensional hexagonal geometry
description follows.
\item[\moc{HEXZ}] keyword to specify that a three-dimensional hexagonal
geometry description follows.
\item[\moc{HEXT}] keyword to specify a single 2-D hexagonal cell geometry having a triangular mesh. This option is only supported by the \moc{NXT:} tracking module (see \Sect{TRKData}).
\item[\moc{HEXTZ}] keyword to specify a single $Z$ directed 3-D hexagonal cell geometry having a triangular mesh (plane $X-Y$). This option is only supported by the \moc{NXT:} tracking module (see \Sect{TRKData}).
\item[\moc{CARCEL}] keyword to specify that a two-dimensional mixed Cartesian
cell (concentric tubes surrounded by a rectangle) description follows. The rectangle can now be
subdivided into a fine mesh when the \moc{EXCELT:} modules is used.
\item[\moc{CARCELX}] keyword to specify that a three-dimensional mixed
Cartesian cell with tubes oriented along the $X-$axis description follows. The three-dimensional
Cartesian cell can now be subdivided into a fine mesh when the \moc{EXCELT:}
module is used.
\item[\moc{CARCELY}] keyword to specify that a three-dimensional mixed
Cartesian cell with tubes oriented along the $Y-$axis description follows. The three-dimensional
Cartesian cell can now be subdivided into a fine mesh when the \moc{EXCELT:}
module is used.
\item[\moc{CARCELZ}] keyword to specify that a three-dimensional mixed
Cartesian cell with tubes oriented along the $Z-$axis description follows. The three-dimensional
Cartesian cell can now be subdivided into a fine mesh when the \moc{EXCELT:}
module is used.
\item[\moc{HEXCEL}] keyword to specify that a two-dimensional mixed hexagonal cell (concentric tubes surrounded by a hexagon) description follows.
\item[\moc{HEXCELZ}] keyword to specify that a three-dimensional mixed hexagonal cell with tubes oriented along the $Z-$axis description follows.
\item[\moc{HEXTCEL}] keyword to specify a single 2-D hexagonal cell geometry having a triangular mesh and containing concentric annular regions.
\item[\moc{HEXTCELZ}] keyword to specify a single $Z$ directed 3-D hexagonal cell geometry a triangular mesh and containing concentric $Z$ directed cylinders.
\item[\moc{GROUP}] keyword to specify that a {\sl do-it-yourself} type geometry
description follows.
\item[\dusa{lx}] number of subdivisions along the $X-$axis (before
mesh-splitting).
\item[\dusa{ly}] number of subdivisions along the $Y-$axis (before
mesh-splitting).
\item[\dusa{lz}] number of subdivisions along the $Z-$axis (before
mesh-splitting).
\item[\dusa{lr}] number of cylinders or spherical shells (before
mesh-splitting).
\item[\dusa{lh}] number of hexagons in an axial plane (including the virtual
hexagon).
\item[\dusa{nhr}] number of concentric hexagons in a \moc{HEXT}, \moc{HEXTZ}, \moc{HEXTCEL} or \moc{HEXTCELZ} cell (see \Fig{GeoHEXT4}). This will lead to an hexagon subdivided into $6N^{2}$ identical trangles.
\begin{figure}[h!]
\begin{center}
\parbox{9.0cm}{\epsfxsize=9cm \epsffile{GeoHEXT4.eps}}
\parbox{14cm}{\caption{Hexagonal geometry with triangular mesh containing 4 concentric hexagon}\label{fig:GeoHEXT4}}
\end{center}
\end{figure}
\item[\dusa{lp}] number of types of cells (number of cells inside which a distinct flux will be calculated) for a \textsl{do-it-yourself} type geometry.
\item[\moc{EDIT}] keyword used to modify the print level \dusa{iprint}.
\item[\dusa{iprint}] index used to control the printing in this module.
It must be set to 0 if no printing on the output file is required, to 1 for
minimum printing (fixed default value) and to 2 for printing the geometry state
vector.
\item[\dstr{descBC}] structure allowing the boundary conditions surrounding
the geometry to be treated (see \Sect{descBC}).
\item[\dstr{descSP}] structure allowing the coordinates of a geometry to be
described (see \Sect{descSP}).
\item[\dstr{descPP}] structure allowing material mixtures to be associated
with a geometry (see \Sect{descPP}).
\item[\dstr{descDH}] structure used to specify double-heterogeneity data (see \Sect{descDH}).
\item[\dstr{descSIJ}] structure used to specify the properties of {\sl do-it-yourself}
geometries (see \Sect{descSIJ}).
\item[\dusa{SUBGEO}] {\tt character*12} name of the directory that will
contain the sub-geometry.
\item[\dusa{OLDGEO}] {\tt character*12} name of a parallel directory
containing an existing sub-geometry. The type and all the characteristics of
\dusa{OLDGEO} will be copied onto \dusa{SUBGEO}.
\end{ListeDeDescription}
Note that all the geometry described above are called {\sl pure geometry} when
they do not contain sub-geometry. When they do contain sub-geometry they will be
called {\sl composite geometry}.
\goodbreak
\subsubsection{Boundary conditions}\label{sect:descBC}
The inputs corresponding to the \dstr{descBC} structure are the following:
\begin{DataStructure}{Structure \dstr{descBC}}
$[$ \moc{X-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$
\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO}
$|$ \moc{PI/2} $|$ \moc{PI} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\
$[$ \moc{X+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$
\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO}
$|$ \moc{PI} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\
$[$ \moc{Y-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$
\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO}
$|$ \moc{PI/2} $|$ \moc{PI} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\
$[$ \moc{Y+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$
\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO}
$|$ \moc{PI} \\
~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\
$[$ \moc{Z-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{TRAN} $|$ \moc{SYME} $|$
\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{Z+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{TRAN} $|$ \moc{SYME} $|$
\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{R+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$
\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{HBC} $\{$ \moc{S30} $|$ \moc{SA60} $|$ \moc{SB60} $|$ \moc{S90} $|$
\moc{R120} $|$ \moc{R180} $|$ \moc{SA180} $|$ \moc{SB180} $|$ \moc{COMPLETE} $\}$ \\
$\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{TRAN} $|$ \moc{ZERO} $\}$ $]$ \\
$[$ \moc{RADS} $[$ \moc{ANG} $]$ \dusa{nrads} (\dusa{xrad}(ir), \dusa{rrad}(ir) $[$, \dusa{ang}(ir) $]$, ir=1,nrads ) $]$
\end{DataStructure}
\noindent
where:
\begin{ListeDeDescription}{mmmmm}
\item[\moc{X-}/\moc{X+}] keyword to specify the boundary conditions associated with the
negative or positive $X$ surface of a Cartesian geometry.
\item[\moc{Y-}/\moc{Y+}] keyword to specify the boundary conditions associated with the
negative or positive $Y$ surface of a Cartesian geometry.
\item[\moc{Z-}/\moc{Z+}] keyword to specify the boundary conditions associated with the
negative or positive $Z$ surface of a Cartesian geometry.
\item[\moc{R+}] keyword to specify the boundary conditions associated with the
outer surface of a cylindrical or spherical geometry.
\item[\moc{HBC}] keyword to specify the boundary conditions associated with
the outer surface of an hexagonal geometry.
\item[\moc{VOID}] keyword to specify that the surface under consideration has
zero re-entrant angular flux. This side is an external surface of the domain.
\item[\moc{REFL}] keyword to specify that the surface under consideration has a reflective boundary condition. In
most DRAGON calculations, this implies an isotropic or white boundary conditions. This condition defines a specular (or cyclic)
boundary condition in case where the tracking is performed with module {\tt SALT:}. A Cartesian geometry is never
unfolded to take into account a \moc{REFL} boundary condition.
\item[\moc{SSYM}] keyword to specify that the surface under consideration has a specular (or mirror) reflective boundary condition. The
main difference between \moc{REFL} and \moc{SSYM} is that for \moc{SSYM} the cell may be unfolded to take
into account the reflection at the boundary.
\item[\moc{DIAG}] keyword to specify that the Cartesian surface under
consideration has the same properties as that associated with a diagonal through
the geometry (see \Fig{cartebc}). Note that two and only two \moc{DIAG} surfaces must be specified.
The diagonal symmetry is only permitted for square geometry and in the following
combinations:
\begin{verbatim}
X+ DIAG Y- DIAG
\end{verbatim}
\noindent
or
\begin{verbatim}
X- DIAG Y+ DIAG
\end{verbatim}
\item[\moc{TRAN}] keyword to specify that the surface under consideration is
connected to the opposite surface of a Cartesian domain (see \Fig{cartebcr}) or to
the opposite surface of a full hexagon. This option provides
the facility to treat an infinite geometry with translation symmetry. The only
combinations of translational symmetry permitted are:
\begin{itemize}
\item Translation along the $X-$axis
\begin{verbatim}
X- TRAN X+ TRAN
\end{verbatim}
\item Translation along the $Y-$axis
\begin{verbatim}
Y- TRAN Y+ TRAN
\end{verbatim}
\item Translation along the $Z-$axis
\begin{verbatim}
Z- TRAN Z+ TRAN
\end{verbatim}
\item Hexagonal translation
\begin{verbatim}
HBC COMPLETE TRAN
\end{verbatim}
\end{itemize}
\item[\moc{SYME}] keyword to specify that the Cartesian surface under
consideration is virtual and that a reflection symmetry is associated with the
adequately directed axis running through the center of the cells closest to this
surface (see \Fig{cartebcr}). Only the hexagonal geometries \moc{S30} and \moc{SA60} can be
surrounded by a \moc{SYME} boundary condition if a specular condition
is to be applied on this boundary.
\item[\moc{ALBE}] keyword to specify that the surface under consideration has
an arbitrary albedo. This side is an external surface of the domain.
\item[\dusa{albedo}] geometric albedo corresponding to the boundary condition
\moc{ALBE} (\dusa{albedo}$>$0.0). The condition ``{\tt ALBE 1.0}" is used to define an isotropic (or white)
boundary condition in case where the tracking is performed with module {\tt SALT:}. The default value is
\dusa{albedo}$=$0.0.
\item[\dusa{icode}] index of a physical albedo corresponding to the boundary
condition \moc{ALBE}. The numerical values of the physical albedo are supplied
by the operator \moc{MAC:} (see \Sect{MACData}).
\item[\moc{ZERO}] keyword to specify that the surface under consideration has a
zero-flux boundary condition. This side is an external surface of the domain.
\item[\moc{PI/2}] keyword to specify that the surface under consideration has a
$\pi$/2 rotational symmetry (see \Fig{cartebcr}). The only $\pi$/2 symmetry permitted is related to
sides ({\tt X-} and {\tt Y-}). This condition can be combined with a translation
boundary condition:({\tt PI/2 X- TRAN X+}) and/or ({\tt PI/2 Y- TRAN Y+}) (see \Fig{cartebct}).
\item[\moc{PI}] keyword to specify that the surface under consideration has a
$\pi$ rotational symmetry (see \Fig{cartebcr}). This keyword is useful for representing a
Cartesian checkerboard pattern as shown in Fig.~\ref{fig:cartebcdam}.
\item[\moc{CYLI}] the side under consideration has a zero incoming current boundary condition
with a circular correction applied on the Cartesian boundary. This option is only available in
the $X$--$Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries defined for TRIVAC full--core calculations.
\item[\moc{ACYL}] the side under consideration has an arbitrary albedo with a circular correction
applied on the Cartesian boundary. This option is only available in
the $X$--$Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries defined for TRIVAC full--core calculations.
\item[\moc{S30}] keyword to specify an hexagonal symmetry of one twelfth of an
assembly (see \Fig{s30}).
\item[\moc{SA60}] keyword to specify an hexagonal symmetry of one sixth of an
assembly of type A (see \Fig{s30}).
\item[\moc{SB60}] keyword to specify an hexagonal symmetry of one sixth of an
assembly of type B (see \Fig{sb60}).
\item[\moc{S90}] keyword to specify an hexagonal symmetry of one quarter of an
assembly (see \Fig{sb60}).
\item[\moc{R120}] keyword to specify a rotation symmetry of one third of an
assembly (see \Fig{r120}).
\item[\moc{R180}] keyword to specify a rotation symmetry of a half assembly
(see \Fig{r120}).
\item[\moc{SA180}] keyword to specify an hexagonal symmetry of half a type A
assembly (see \Fig{sa180}).
\item[\moc{SB180}] keyword to specify an hexagonal symmetry of half a type B
assembly (see \Fig{sb180}).
\item[\moc{COMPLETE}] keyword to specify a complete hexagonal assembly (see
\Fig{compl}).
\item[\moc{RADS}] This key word is used to specify the cylindrical correction applied in the $X-Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries.\cite{roy}
\item[\moc{ANG}] This key word allows the angle (see \Fig{corr})
of the cylindrical notch to be set. By default, no notch is present.
\item[\dusa{nrads}] Number of different corrections along the cylinder main axis (i.e. the $Z$ axis).
\item[\dusa{xrad}(ir)] Coordinate of the $Z$ axis from which the correction is applied.
\item[\dusa{rrad}(ir)] Radius of the real cylindrical boundary.
\item[\dusa{ang}(ir)] Angle of the cylindrical notch. This data is given if and only if the key word \moc{ANG} is present. \dusa{ang}(ir) $= {\pi \over 2}$ by default (i.e. the correction is applied at every angle).
\end{ListeDeDescription}
\goodbreak
\begin{figure}[!]
\begin{center}
\epsfxsize=13cm
\centerline{ \epsffile{ebc.eps}}
\parbox{14cm}{\caption{Diagonal boundary conditions in Cartesian geometry}\label{fig:cartebc}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=15cm
\centerline{ \epsffile{ebcr.eps}}
\parbox{14cm}{\caption{Various boundary conditions in Cartesian geometry}\label{fig:cartebcr}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=10cm
\centerline{ \epsffile{ebct.eps}}
\parbox{14cm}{\caption{Translation/rotation boundary conditions in Cartesian geometry}\label{fig:cartebct}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=13cm
\centerline{ \epsffile{ebcdam.eps}}
\parbox{14cm}{\caption{Representing a checkerboard in Cartesian geometry}\label{fig:cartebcdam}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=15cm
\centerline{ \epsffile{Gs30.eps}}
\parbox{14cm}{\caption{Hexagonal geometries of type S30 and SA60}\label{fig:s30}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=15cm
\centerline{ \epsffile{Gsb60.eps}}
\parbox{14cm}{\caption{Hexagonal geometries of type SB60 and S90}\label{fig:sb60}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=12cm
\centerline{ \epsffile{Gr120.eps}}
\parbox{14cm}{\caption{Hexagonal geometries of type R120 and R180}\label{fig:r120}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=5cm
\centerline{ \epsffile{Gsa180.eps}}
\parbox{14cm}{\caption{Hexagonal geometry of type SA180}\label{fig:sa180}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=11cm
\centerline{ \epsffile{Gsb180.eps}}
\parbox{14cm}{\caption{Hexagonal geometry of type SB180}\label{fig:sb180}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=10cm
\centerline{ \epsffile{Gcomplete.eps}}
\parbox{14cm}{\caption{Hexagonal geometry of type
COMPLETE}\label{fig:compl}}
\end{center}
\end{figure}
\begin{figure}[!]
\begin{center}
\epsfxsize=6cm
\centerline{ \epsffile{Fig6.eps}}
\parbox{14cm}{\caption{Cylindrical correction in Cartesian geometry}
\label{fig:corr}}
\end{center}
\end{figure}
\clearpage
\subsubsection{Spatial properties of geometry}\label{sect:descSP}
The \dstr{descSP} structure has the following contents:
\begin{DataStructure}{Structure \dstr{descSP}}
$[$ \moc{MESHX} (\dusa{xxx}($i$), $i$=1,\dusa{lx}+1) $]$\\
$[$ \moc{SPLITX} (\dusa{ispltx}($i$), $i$=1,\dusa{lx}) $]$\\
$[$ \moc{MESHY} (\dusa{yyy}($i$), $i$=1,\dusa{ly}+1) $]$\\
$[$ \moc{SPLITY} (\dusa{isplty}($i$), $i$=1,\dusa{ly}) $]$\\
$[$ \moc{MESHZ} (\dusa{zzz}($i$), $i$=1,\dusa{lz}+1) $]$\\
$[$ \moc{SPLITZ} (\dusa{ispltz}($i$), $i$=1,\dusa{lz}) $]$\\
$[$ \moc{RADIUS} (\dusa{rrr}($i$), $i$=1,\dusa{lr}+1) $]$\\
$[$ \moc{OFFCENTER} (\dusa{disxyz}($i$), $i$=1,3) $]$\\
$[$ \moc{SPLITR} (\dusa{ispltr}($i$), $i$=1,\dusa{lr}) $]$\\
$[$ \moc{SECT} \dusa{isect} $[$ \dusa{jsect} $]~]$\\
$[$ \moc{SIDE} \dusa{sideh} $[$ \dusa{hexmsh} $]$ $]$\\
$[~\{$ \moc{SPLITH} \dusa{isplth} $|$ \moc{SPLITL} \dusa{ispltl} $\}~]$\\
$[$ $\{$ \moc{NPIN} \dusa{npins} \\
\hspace{0.75cm} $\{$ $[$ \moc{RPIN} $\{$ \dusa{rpins} $|$ (\dusa{rpins}($i$), $i$=1, \dusa{npins}) $\}$ $]$ \\
\hspace{1.0cm} $[$ \moc{APIN} $\{$ \dusa{apins} $|$ (\dusa{apins}($i$), $i$=1, \dusa{npins}) $\}$ $]$ $|$ \\
\hspace{1.0cm} $[$ \moc{CPINX} (\dusa{xpins}($i$), $i$=1, \dusa{npins}) $]$ \\
\hspace{1.0cm} $[$ \moc{CPINY} (\dusa{ypins}($i$), $i$=1, \dusa{npins}) $]$ \\
\hspace{1.0cm} $[$ \moc{CPINZ} (\dusa{zpins}($i$), $i$=1, \dusa{npins}) $]$ $\}$\\
\hspace{0.3cm}$|$ \moc{DPIN} \dusa{dpins} $\}$ $]$
\end{DataStructure}
\begin{ListeDeDescription}{mmmmmmmm}
\item[\moc{MESHX}] keyword to specify the spatial mesh defining the regions along the $X-$axis.
\item[\dusa{xxx}] array giving the $X$ limits (cm) of the regions making up the geometry. These values
must be given in order, from \moc{X-} to \moc{X+}. If the geometry presents a diagonal symmetry the same
data is also used along the $Y-$axis.
\item[\moc{SPLITX}] keyword to specify that a mesh splitting of the geometry along the $X-$axis is to be
performed.
\item[\dusa{ispltx}] array giving the number of zones that will be considered for each region along the
$X-$axis. If the geometry presents a diagonal symmetry this information is also used for the splitting
along the $Y-$axis. By default,
\dusa{ispltx}=1.
\item[\moc{MESHY}] keyword to specify the spatial mesh defining the regions along the $Y-$axis.
\item[\dusa{yyy}] array giving the $Y$ limits (cm) of the regions making up the geometry. These values
must be given in order, from \moc{Y-} to \moc{Y+}.
\item[\moc{SPLITY}] keyword to specify that a mesh splitting of the geometry along the $Y-$axis is to be
performed.
\item[\dusa{isplty}] array giving the number of zones that will be considered for each region along the
$Y-$axis. By default,
\dusa{isplty}=1 unless a diagonal symmetry is used in which case \dusa{isplty}$=$\dusa{ispltx}.
\item[\moc{MESHZ}] keyword to specify the spatial mesh defining the regions along the $Z-$axis.
\item[\dusa{zzz}] array giving the $Z$ limits (cm) of the regions making up the geometry. These values
must be given in order, from \moc{Z-} to \moc{Z+}.
\item[\moc{SPLITZ}] keyword to specify that a mesh splitting of the geometry along the $Z-$axis is to be
performed.
\item[\dusa{ispltz}] array giving the number of zones that will be considered for each region along the
$Z-$axis. By default,
\dusa{ispltz}=1.
\item[\moc{RADIUS}] keyword to specify the spatial mesh along the radial direction.
\item[\dusa{rrr}] array giving the radial limits (cm) of the annular
regions (cylindrical or spherical) making up the geometry. It is used for the
following geometries: \moc{TUBE}, \moc{TUBEZ}, \moc{SPHERE}), \moc{CARCEL},
\moc{CARCELX}, \moc{CARCELY}, \moc{CARCELZ}, \moc{HEXCEL} and \moc{HEXCELZ}. It
is important to note that we must have \dusa{rrr}(1)=0.0. The other values
of \dusa{rrr}($i$) in a \moc{CARCEL}-- or \moc{HEXCEL}--type geometry are
defined as shown in \Fig{radius}.
\item[\moc{OFFCENTER}] keyword to specify that the concentric annular regions in a \moc{CARCEL},
\moc{CARCELX}, \moc{CARCELY},
\moc{CARCELZ}, \moc{TUBE}, \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} geometry can now be displaced with
respect to the center of the Cartesian mesh. This option will only be treated when the \moc{EXCELT:},
\moc{NXT:} and \moc{EXCELL:} modules are used.
\item[\dusa{disxyz}] array giving the $x$ (\dusa{disxyz}(1)), $y$ (\dusa{disxyz}(2)) and $z$
(\dusa{disxyz}(3)) displacement (cm) of the concentric annular regions with respect to the center of the
Cartesian mesh.
\item[\moc{SPLITR}] keyword to specify that a mesh splitting of the geometry along the radial direction is
to be performed.
\item[\dusa{ispltr}] array giving the number of zones that will be considered for each region along the
radial axis. A negative value results in a splitting of the regions into zones of equal volumes; a
positive value results in a uniform splitting along the radial direction. By default, \dusa{ispltr}=1.
\item[\moc{SECT}] keyword to specify the type of sectorization for a Cartesian
or hexagonal cell. In hexagonal geometry, this keyword is expected to be defined near the
\moc{SIDE} keyword. By default, no sectorization is performed.
\item[\dusa{isect}] sectorization index, defined as
\begin{displaymath}
\negthinspace\negthinspace\negthinspace isect = \left\{
\begin{array}{rl}
-999: & \textrm{non-sectorized cell processed as a sectorized cell} \\
-1: & \textrm{$\times$--type sectorization} \\
0: & \textrm{non-sectorized cell} \\
1: & \textrm{$+$--type sectorization} \\
2: & \textrm{simultaneous $\times$-- and $+$--type sectorization} \\
3: & \textrm{simultaneous $\times$-- and $+$--type sectorization shifted by 22.5$^\circ$} \\
4: & \textrm{windmill sectorization.}
\end{array} \right.
\end{displaymath}
\item[\dusa{jsect}] number of embedded tubes that are {\sl not} sectorized, with 0 $\le$ \dusa{jsect} $\le$ \dusa{lr}. By default, \dusa{jsect} $=0$. Examples of sectorization options are depicted in Figs.~\ref{fig:rect3} and~\ref{fig:hexa3}.
\item[\moc{SIDE}] keyword to specify the length of a side of a hexagon.
\item[\dusa{sideh}] length of one side of a hexagon (cm).
\item[\dusa{hexmsh}] triangular mesh for \moc{HEXT}, \moc{HEXTCEL}, \moc{HEXTZ} and \moc{HEXTCELZ} hexagonal geometries. By default, \dusa{hexmsh}=\dusa{sideh}/\dusa{nhr}. When \dusa{hexmsh} is provided, it is used instead of the default value with the following constraints
$$
\textit{sideh} \le \textit{nhr}\times \textit{hexmsh}<\textit{sideh}+\textit{hexmsh}
$$
The triangles in the last hexagonal ring are truncated at \dusa{sideh} (see \Fig{GeoHEXT4C}).
\item[\moc{SPLITH}] keyword to specify that a triangular mesh splitting of the hexagonal geometry is to be performed -- for \moc{HEX}, \moc{HEXZ}, \moc{HEXT}, \moc{HEXTCEL}, \moc{HEXTZ} and \moc{HEXTCELZ} type geometries. This is valid only if \dusa{nhr}=1.
\item[\dusa{isplth}] value of the triangular mesh splitting. Its use is similar to \dusa{nhr} except that each sector of the hexagonal cell will be filled by a unique mixture. The number of triangles per hexagon is given by $6 \times$\dusa{isplth}$^2$.
\dusa{isplth} $=0$ is used for full hexagon discretization.
\item[\moc{SPLITL}] keyword to specify that a lozenge mesh splitting of the hexagonal geometry is to be performed -- for \moc{HEX} and \moc{HEXZ} type geometries.
\item[\dusa{ispltl}] value of the lozenge splitting. The number of lozenges per hexagon is given by $3 \times$\dusa{ispltl}$^2$.
\item[\moc{NPIN}] keyword to specify the number of pins located in a cluster geometry. It can only be used for \moc{SPHERE}, \moc{TUBE}, \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} sub-geometry.
\item[\dusa{npins}] the number of pins associated with this sub-geometry in the primary geometry.
\item[\moc{DPIN}] keyword to specify the pin density in a geometry that contains clusters. A number $N_{p,r}$ of pins that will be placed randomly in the geometry with
$$
N_{p,r}=\textrm{NINT}\left(\frac{d_{p,r}V_{c}}{V_{p}}\right)
$$
where $d_{p,r}$ is the pin density, $V_{g}$ the volume of the cell containing these pins and$V_{p}$ the volume of this pin type. The function $\textrm{NINT}()$ provides the nearest integer associated with its real argument. It can only be used for \moc{SPHERE}, \moc{TUBE}, \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} sub-geometry.
\item[\dusa{dpins}] the pin density $d_{p,r}$.
\item[\moc{RPIN}] keyword to specify the radius of an imaginary cylinder where the centers of the pins are to be placed in a cluster geometry.
\item[\dusa{rpins}] the radius (cm) of an imaginary cylinder where the centers of the pins are to be placed. In the case where a single value is provided for \dusa{rpins}, all the pins are located at the same distance from the center of the cell (taking account the offset provided by the keyword \moc{OFFCENTER}).
\item[\moc{APIN}] keyword to specify the angle of the first pin or each pin centered on an imaginary cylinder in a cluster geometry.
\item[\dusa{apins}] the angle (radian) of the first pin in the ring (only one value provided for \dusa{apins}, the angular spacing of the pins being $2\pi/$\dusa{npins}) or the angle of each pins in the ring.
\item[\moc{CPINX}] keyword to specify the $x$ position where the centers of the pins are
to be placed in a cluster geometry.
\item[\dusa{xpins}] the $x$ position (cm) where the centers of the pins are to be
placed.
\item[\moc{CPINY}] keyword to specify the $y$ position where the centers of the pins are
to be placed in a cluster geometry.
\item[\dusa{ypins}] the $y$ position (cm) where the centers of the pins are to be
placed.
\item[\moc{CPINZ}] keyword to specify the $z$ position where the centers of the pins are
to be placed in a cluster geometry.
\item[\dusa{zpins}] the $z$ position (cm) where the centers of the pins are to be
placed.
\end{ListeDeDescription}
\begin{figure}[!]
\begin{center}
\epsfxsize=6cm
\centerline{ \epsffile{radius.eps}}
\parbox{16cm}{\caption{Definition of the radii in a \moc{CARCEL}-- or
\moc{HEXCEL}--type geometry}\label{fig:radius}}
\end{center}
\end{figure}
The user should be warned that the maximum number of zones resulting from the above description of a geometry $L_{\rm{zones}}$ should not exceed the limits imposed by
\dusa{maxreg} and defined in the tracking module \moc{SYBILT:}, \moc{NXT:} or
\moc{EXCELT:} (see \Sect{TRKData}). For pure geometry with splitting we can define the variables $L_x$, $L_y$, $L_z$, $L_r$, $L_h$ and $L_{t}$ as:
\begin{align*}
L_x=&\sum_{i=1}^{\textit{lx}} \textit{ispltx}(i) \\
L_y=&\sum_{i=1}^{\textit{ly}} \textit{isplty}(i) \\
L_z=&\sum_{i=1}^{\textit{lz}} \textit{ispltz}(i) \\
L_r=&\sum_{i=1}^{\textit{lr}} |\textit{ispltr}(i)| \\
L_h=&\textit{lh} \\
L_t=&\begin{cases}
6\times\textit{nhr}^{2} &if $\textit{nhr}> 1$\\
6\times\textit{isplith}^{2} &otherwise \\ \end{cases}
\end{align*}
and $L_{\rm{zones}}$ will be given by:
\begin{itemize}
\item \moc{SPHERE} geometry.
$$L_{\rm{zones}}=L_r$$
\item \moc{TUBE} geometry.
$$L_{\rm{zones}}= L_x L_y L_r $$
\item \moc{TUBEX} geometry.
$$L_{\rm{zones}}= L_x L_y L_z L_r$$
\item \moc{TUBEY} geometry.
$$L_{\rm{zones}}= L_x L_y L_z L_r$$
\item \moc{TUBEZ} geometry.
$$L_{\rm{zones}}= L_x L_y L_z L_r$$
\item \moc{CAR1D} geometry.
$$L_{\rm{zones}}=L_x$$
\item \moc{CAR2D} geometry
\begin{itemize}
\item without diagonal symmetry.
$$L_{\rm{zones}}=L_x L_y$$
\item with diagonal symmetry.
$$L_{\rm{zones}}=\frac{L_x (L_y+1)}{2}=\frac{(L_x+1) L_y}{2}$$
\end{itemize}
\item \moc{CARCEL} geometries.
$$L_{\rm{zones}}=L_x L_y (L_r+1) $$
\item \moc{CAR3D} geometry
\begin{itemize}
\item without diagonal symmetry.
$$L_{\rm{zones}}=L_x L_y L_z$$
\item with diagonal symmetry.
$$L_{\rm{zones}}=\frac{L_x (L_y+1) L_z}{2}=\frac{(L_x+1) L_y L_z}{2}$$
\end{itemize}
\item \moc{CARCELX} geometry.
$$L_{\rm{zones}}=L_x L_y L_z (L_r+1) $$
\item \moc{CARCELY} geometry.
$$L_{\rm{zones}}=L_x L_y L_z (L_r+1) $$
\item \moc{CARCELZ} geometries.
$$L_{\rm{zones}}=L_x L_y L_z (L_r+1) $$
\item \moc{HEX} geometry.
\begin{align*}L_{\text{zones}}&=L_h\end{align*}
\item \moc{HEXT} geometry.
\begin{align*}L_{\text{zones}}&=L_{t}\end{align*}
\item \moc{HEXCEL} geometries.
\begin{align*}L_{\text{zones}}&=(L_r+1) \end{align*}
\item \moc{HEXTCEL} geometries.
$$L_{\rm{zones}}=L_{t}$$
\item \moc{HEXZ} geometry.
\begin{align*}L_{\text{zones}}&=L_z L_h\end{align*}
\item \moc{HEXTZ} geometry.
\begin{align*}L_{\text{zones}}&=L_z L_{t}\end{align*}
\item \moc{HEXCELZ} geometries.
\begin{align*}L_{\text{zones}}&=L_z (L_r+1) \end{align*}
\item \moc{HEXTCELZ} geometries.
\begin{align*}L_{\text{zones}}&=L_z L_{t} (L_r+1) \end{align*}
\end{itemize}
For cluster geometries, only one region is associated with each zone in a pin even if this pin is repeated \dusa{npins} times.
\vskip 0.08cm
For mixed geometries, it is important to ensure that $L_{\rm{zones}}$ which represents the
sum over all the sub-geometries of the total number of regions $L^i_t$
associated with each pure sub-geometry $i$ computed using the technique
described above. For cluster geometries, only one region is associated with each
zone in a pin even if this pin is repeated \dusa{npins} times.
\begin{figure}[h!]
\begin{center}
\epsfxsize=16cm
\centerline{ \epsffile{rect3c.eps}}
\parbox{14cm}{\caption{Numerotation of the sectors in a Cartesian cell}\label{fig:rect3}}
\end{center}
\end{figure}
\begin{figure}[h!]
\begin{center}
\epsfxsize=13cm
\centerline{ \epsffile{hexa3c.eps}}
\parbox{14cm}{\caption{Numerotation of the sectors in an hexagonal cell}\label{fig:hexa3}}
\end{center}
\end{figure}
\begin{figure}[h!]
\begin{center}
\parbox{11.0cm}{\epsfxsize=11cm \epsffile{GeoHEXT4C.eps}}
\parbox{14cm}{\caption{Hexagonal geometry with triangular mesh that extends past the hexagonal boundary}\label{fig:GeoHEXT4C}}
\end{center}
\end{figure}
\subsubsection{Physical properties of geometry}\label{sect:descPP}
In addition to specifying the mixture associated with each region in the
geometry, the \dstr{descPP} structure is also used to provide information on the
sub-geometry required in this geometry. For example, an optional procedure in
DRAGON groups together regions so as to reduce the number of unknowns
\dusa{maxreg} in the flux calculation. In this way, only the merged regions
contribute to the cost of the calculation. However, the following points must be
considered:
\begin{enumerate}
\item All the cells belonging to the same merged region must have the same
nuclear properties and dimensions.
\item The grouping procedure is based on the approximation that all the regions
belonging to the same merged region share the same flux.
\item The merging can also take into account region orientation (by a rotation
and/or transposition) before they are merged. This procedure facilitates the
merging of regions when a \moc{DIAG} or \moc{SYME} boundary condition is used.
\end{enumerate}
The \dstr{descPP} structure has the following contents:
\begin{DataStructure}{Structure \dstr{descPP}}
$[$ \moc{MIX} $\{$ (\dusa{imix}(i),i=1,$n_t$) $[$ \moc{REPEAT} $]~|$\\
$~~~~[[$ \moc{PLANE} \dusa{iplan} $\{$ (\dusa{imix}(i),i=1,\dusa{lp}) $|$ \moc{SAME} \dusa{iplan1}\\
$~~~~|~[[$ \moc{CROWN} $\{$ (\dusa{imix}(i),i=1,\dusa{lc}) $|$ \moc{ALL} \dusa{jmix} $|$ \moc{SAME} \dusa{iplan1} $\}~]]$\\
$~~~~|~[[$ \moc{UPTO} \dusa{ic} \moc{ALL} \dusa{jmix} $|$ \moc{SAME} \dusa{iplan1} $\}~]]~]]~\}$\\
$]$\\
$[$ \moc{HMIX} (\dusa{ihmix}(i), i=1,$N_t$) $[$ \moc{REPEAT} $]$ $]$\\
$[$ \moc{CELL} (\dusa{HCELL}(i),i=1,$N_t$) $]$\\
$[$ \moc{MERGE} (\dusa{imerge}(i),i=1,$N_t$) $]$\\
$[$ \moc{TURN} (\dusa{HTURN}(i),i=1,$N_t$) $]$\\
$[$ \moc{CLUSTER} (\dusa{NAMPIN}(i),i=1,$N_p$) $]$\\
$[$ \moc{MIX-NAMES} (\dusa{NAMMIX}(i),i=1,\dusa{maxmix}) $]$
\end{DataStructure}
\noindent
Here $N_p$ is the number of pin types in the cluster. In addition to the real (physical) mixture \dusa{imix} present in a given region of space and specified by the keyword \moc{MIX}, a virtual mixture \dusa{ihmix} can also be provided using the keyword \moc{HMIX}. This mixture can be used to identify the regions that will be combined in the \moc{EDI:} module to create homogenized region \dusa{ihmix} (see \Sect{EDIData}). Here $N_{t}$
is computed in a way similar to $L_{\rm zones}$ namely
\begin{itemize}
\item \moc{SPHERE} geometry.
$$N_{t}=\textit{lr}$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$).
\end{enumerate}
\item \moc{TUBE} geometry.
$$N_{t}=\textit{lr}\times\textit{lx}\times \textit{ly} $$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j)$;
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\item \moc{TUBEX} geometry.
$$N_{t}=\textit{lr}\times\textit{ly}\times \textit{lz}\times \textit{lx}$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(j,k,i)$;
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$ and $i$);
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$);
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$).
\end{enumerate}
\item \moc{TUBEY} geometry.
$$N_{t}=\textit{lr}\times\textit{lz}\times \textit{lx}\times \textit{ly}$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(k,i,j)$;
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$ and $j$);
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\item \moc{TUBEZ} geometry.
$$N_{t}= \textit{lr}\times\textit{lx}\times \textit{ly}\times \textit{lz}$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j,k)$;
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$ and $k$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$);
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\item \moc{CAR1D} geometry.
$$N_{t}=\textit{lx}$$
The mixtures are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$).
\end{enumerate}
\item \moc{CAR2D} geometry
\begin{itemize}
\item without diagonal symmetry.
$$N_{t}=\textit{lx}\times \textit{ly}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\item with diagonal symmetry (\moc{X-} and \moc{Y+}).
$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=j,\textit{lx}$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\item with diagonal symmetry (\moc{X+} and \moc{Y-}).
$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=1,j$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\end{itemize}
\item \moc{CARCEL} geometries.
$$N_{t}=(\textit{lr}+1)\times\textit{lx}\times \textit{ly} $$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j)$;
\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(i,j)$;
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\item \moc{CAR3D} geometry
\begin{itemize}
\item without diagonal symmetry.
$$N_{t}=\textit{lx}\times \textit{ly}\times \textit{lz}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$ and $k$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for $k$);
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\item with diagonal symmetry (\moc{X-} and \moc{Y+}).
$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}\times\textit{lz}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=j,\textit{lx}$ for each $j$ and $k$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$) for each $k$);
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\item with diagonal symmetry (\moc{X+} and \moc{Y-}).
$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}\times\textit{lz}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+} ($i=1,j$ for each $j$ and $k$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$);
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\end{itemize}
\item \moc{CARCELX} geometry.
$$N_{t}=(\textit{lr}+1)\times\textit{ly}\times \textit{lz}\times \textit{lx} $$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(j,k,i)$;
\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(j,k,i)$;
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$ and $i$);
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$);
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$).
\end{enumerate}
\item \moc{CARCELY} geometry.
$$N_{t}=(\textit{lr}+1)\times\textit{lz}\times \textit{lx}\times \textit{ly}$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(k,i,j)$;
\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(k,i,j)$;
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$ and $j$);
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$).
\end{enumerate}
\item \moc{CARCELZ} geometries.
$$N_{t}=(\textit{lr}+1)\times\textit{lx}\times \textit{ly}\times \textit{lz}$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j,k)$;
\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(i,j,k)$;
\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$ and $k$);
\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$).
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\item \moc{HEX} geometry.
$$N_{t}=\textit{lh}$$
The mixtures or cells are then given in the order provided in \Figto{s30}{compl}.
\item \moc{HEXT} geometry.
Three options are possible here:
\begin{itemize}
\item All the triangles in an hexagonal crown have the same mixture. In this case
\begin{align*}N_{t}&=\textit{nhr}\end{align*}
and the real and virtual mixtures are given from each crown starting at the center of the cell.
\item All the triangles in an hexagonal crown in a given sector have the same mixture. In this case
\begin{align*}N_{t}&=6\times \textit{nhr}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$.
\end{enumerate}
\item All the triangles contain a different mixture. In this case
\begin{align*}N_{t}&=6\times \textit{nhr}^{2}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided.
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$.
\end{enumerate}
\end{itemize}
\item \moc{HEXCEL} geometries.
$$N_{t}=(\textit{lr}+1)$$
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$);
\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside the hexagonal region.
\end{enumerate}
\item \moc{HEXZ} geometry.
$$N_{t}=\textit{lh}\times \textit{lz}$$
The mixtures or cells are then given in the following order
\begin{enumerate}
\item according to \Figto{s30}{compl} for plane $k$;
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\item \moc{HEXTCEL} geometries.
Three options are possible here:
\begin{itemize}
\item All the triangles in an hexagonal crown have the same mixture. In this case
\begin{align*}N_{t}&=(\textit{lr}+1)\times \textit{nhr}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}+1$) for each crown ($l=\textit{lr}+1$ is for the part of crown outside the annular regions);
\item from each crown starting from the center of the cell.
\end{enumerate}
\item All the triangles in an hexagonal crown in a given sector have the same mixture. In this case
\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}+1$) for each crown of each sector ($l=\textit{lr}+1$ is for the part of crown outside the annular regions);
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$.
\end{enumerate}
\item All the triangles contain a different mixture. In this case
\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}^{2}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}+1$) for each triangle ($l=\textit{lr}+1$ is for the part of triangle outside the annular regions);
\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided.
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$.
\end{enumerate}
\end{itemize}
\item \moc{HEXTZ} geometry.
Three options are again possible here:
\begin{itemize}
\item All the triangles in an hexagonal crown in a plane have the same mixture. In this case
\begin{align*}N_{t}&=\textit{nhr}\times \textit{lz}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item from each crown starting from the center of the cell;
\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$).
\end{enumerate}
\item All the triangles in an hexagonal crown in a given sector in a plane have the same mixture. In this case
\begin{align*}N_{t}&=6\times \textit{nhr}\times \textit{lz}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$;
\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$).
\end{enumerate}
\item All the triangles contain a different mixture. In this case
\begin{align*}N_{t}&=6\times \textit{nhr}^{2}\times \textit{lz}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided.
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$;
\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$).
\end{enumerate}
\end{itemize}
\item \moc{HEXCELZ} geometries.
$$N_{t}=(\textit{lr}+1)\times \textit{lz}$$
\item \moc{HEXTCELZ} geometries.
Three options are possible here:
\begin{itemize}
\item All the triangles in an hexagonal crown have the same mixture. In this case
\begin{align*}N_{t}&=(\textit{lr}+1)\times \textit{nhr}\times \textit{lz}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}+1$) for each crown ($l=\textit{lr}+1$ is for the part of crown outside the annular regions);
\item from each crown starting from the center of the cell;
\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$).
\end{enumerate}
\item All the triangles in an hexagonal crown in a given sector have the same mixture. In this case
\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}\times \textit{lz}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}+1$) for each crown of each sector ($l=\textit{lr}+1$ is for the part of crown outside the annular regions);
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$;
\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$).
\end{enumerate}
\item All the triangles contain a different mixture. In this case
\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}^{2}\times \textit{lz}\end{align*}
and the real and virtual mixtures are given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}+1$) for each triangle ($l=\textit{lr}+1$ is for the part of triangle outside the annular regions);
\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided.
\item from each crown in sector $j$ starting from the center of the cell;
\item for each sector $j=1,6$.
\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$).
\end{enumerate}
\end{itemize}
\end{itemize}
The mixtures are then given in the following order
\begin{enumerate}
\item radially outward ($l=1,\textit{lr}$) for plane $k$;
\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside the hexagonal region on plane $k$;
\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$).
\end{enumerate}
\begin{figure}[h!]
\begin{center}
\epsfxsize=8cm
\centerline{ \epsffile{Goricart.eps}}
\parbox{14cm}{\caption{Description of the various rotations allowed for
Cartesian geometries}\label{fig:oricart}}
\end{center}
\end{figure}
\begin{figure}[h!]
\begin{center}
\epsfxsize=11cm
\centerline{ \epsffile{Gorihex.eps}}
\parbox{14cm}{\caption{Description of the various rotation allowed for
hexagonal geometries}\label{fig:orihex}}
\end{center}
\end{figure}
\begin{figure}[h!]
\begin{center}
\epsfxsize=7cm
\centerline{ \epsffile{Gcluster.eps}}
\parbox{14cm}{\caption{Typical cluster geometry}\label{fig:cluster}}
\end{center}
\end{figure}
\clearpage
The inputs associated with this structure have the following meaning:
\begin{ListeDeDescription}{mmmmmm}
\item[\moc{MIX}] keyword to specify the isotopic mixture number or
sub-geometry associated
with each region inside the geometry. When diagonal symmetries are considered,
only the mixture associated with regions inside the symmetrized geometry need to
be specified. When a sub-geometry is located inside symmetrized geometry but
outside the calculation region it must be declared {\sl virtual} (for example,
the corners of a nuclear reactor).
\item[\dusa{imix}] array of $n_{t}\le N_t$ integers {\sl or} character variables associated
with each region. An integer is a mixture number associated with a region
\dusa{imix}$\le$\dusa{maxmix} (see \Sectand{MACData}{LIBData}). If
\dusa{imix}=0, the corresponding volume is replaced by a void region. If
\dusa{imix} is a character variable, it is replaced by the corresponding
sub-geometry or {\sl generating cell}. These values must be specified in
the following order for most geometries:
\begin{enumerate}
\item radially from the inside out.
\item from surface \moc{X-} to surface \moc{X+}
\item from surface \moc{Y-} to surface \moc{Y+}
\item from surface \moc{Z-} to surface \moc{Z+}
\end{enumerate}
In the cases where a \moc{CARCELX} and a \moc{TUBEX} geometry are defined then we will use
\begin{enumerate}
\item radially from the inside out ($lr+1$ mixtures for \moc{CARCELX} and $lr$ for \moc{TUBEX}).
\item from surface \moc{Y-} to surface \moc{Y+}
\item from surface \moc{Z-} to surface \moc{Z+}
\item from surface \moc{X-} to surface \moc{X+}
\end{enumerate}
Finally, for a \moc{CARCELY} and \moc{TUBEY} geometry are defined the following order is considered:
\begin{enumerate}
\item radially from the inside out ($lr+1$ mixtures for \moc{CARCELY} and $lr$ for \moc{TUBEY})
\item from surface \moc{Z-} to surface \moc{Z+}
\item from surface \moc{X-} to surface \moc{X+}
\item from surface \moc{Y-} to surface \moc{Y+}
\end{enumerate}
In the cases where a sectorized cell geometry is defined, \dusa{imix} must
be defined in each sector, following the order shown in \Figand{rect3}{hexa3}.
Also note that \dusa{imix} is {\sl not affected} by the values of the
mesh-splitting indices \dusa{ispltx}, \dusa{isplty}, \dusa{ispltz}
or \dusa{ispltr}.
\item[\moc{REPEAT}] keyword to specify the previous list of mixtures will be repeated. This is valid only when $N_t/n_t$
is an integer. If this keyword is absent and $n_t < N_t$, then the missing mixtures will be replaced
with void (\dusa{imix}(i) $=0$).
\item[\moc{PLANE}] keyword to attribute mixture numbers to each volume inside a single 2-D plane. This option is
valid only for 3-D geometries, Cartesian or hexagonal.
\item[\dusa{iplan}] plane number for which material mixture are input.
\item[\moc{SAME}] keyword to attribute the same material mixture numbers of the \dusa{iplan1} plane to the \dusa{iplan} plane. In
hexagonal geometry, it can indicate that the mixture numbers of the current crown of the \dusa{iplan}th
plane will be identical to those of the same crown of the \dusa{iplan1}th plane.
\item[\dusa{iplan1}] plane number used as reference to input the current plane or crown(s).
\item[\dusa{lp}] number of volumes in a plane. In Cartesian geometry, $lp=lx*ly$ and in hexagonal geometry,
$lp=lh$.
\item[\moc{CROWN}] keyword to attribute mixture numbers to each hexagon of a single crown. This option is only
valid for \moc{COMPLETE} hexagonal geometry definition. Each use of the keyword \moc{CROWN} increases
the crown number by 1. So it is not required to give its number, but crowns must be defined from
the center to the peripherical regions of a plane.
\item[\dusa{lc}] number of hexagons in the current crown. For the \dusa{i}th crown of a compelete hexagonal plane,
$lc=(i-1)*6$. The first crown is composed of only one hexagon.
\item[\moc{ALL}] keyword to specify that the \dusa{lc} material mixture number of the current crown have the same value
\dusa{jmix}.
\item[\moc{UPTO}] keyword to attribute material mixture numbers of the current crown up to the \dusa{ic} one.
\item[\dusa{ic}] number of the last crown in \moc{UPTO} option. Its value must be greater than equal to the current
crown number.
\item[\moc{HMIX}] keyword to specify the virtual isotopic mixture associated with each region inside the geometry. These
virtual mixtures will be produced by homogenization in the {\tt EDI:} module (see \Sect{descedi}).
\item[\moc{CELL}] keyword to specify the location of the sub-geometry called
{\sl generating cells} in a Cartesian or hexagonal geometry.
\item[\dusa{HCELL}] array of sub-geometry {\tt character*12} names which will
be superimposed upon the current Cartesian geometry. The same sub-geometry may
appear in different positions within the global geometry if the material
properties and dimensions are identical. The concept of sub-geometry is useful
for the interface current method in a SYBIL calculation since the collision
probability matrix associated with each sub-geometry is computed independently
of its location in the geometry. In general, the neutron fluxes in identical
sub-geometry located at different locations will be different even if they are
associated with the same collision probability matrix. These sub-geometry names
must be specified in the following order:
\begin{enumerate}
\item from surface \moc{X-} to surface \moc{X+}
\item from surface \moc{Y-} to surface \moc{Y+}
\item from surface \moc{Z-} to surface \moc{Z+}
\end{enumerate}
\item[\moc{MERGE}] keyword to specify that some sub-geometries or regions must
be merged.
\item[\dusa{imerge}] array of numbers that associate a global sub-geometry or
region number with each sub-geometry or region. All the sub-geometries or
regions with the same global number will be attributed the same flux.
\item[\moc{TURN}] keyword to specify that some sub-geometries must be rotated
in space before being located at a specific position.
\item[\dusa{HTURN}] array of {\tt character*1} keywords to rotate
conveniently each sub-geometry. The letters {\tt A} to {\tt L} are used as
keywords to specify these rotation. For Cartesian geometries, the eight possible
orientations are shown in \Fig{oricart} while for hexagonal geometries
the permitted orientations are shown in \Fig{orihex}. For 3-D cells, the
same letters can be used to describe the rotation in the $X-Y$ plane. However,
an additional $-$ sign can be glued to the 2-D rotation identifier to
indicate reflection of the cell along the $Z$-axis ({\tt -A} to {\tt -L}).
\item[\moc{CLUSTER}] keyword to specify that pin (cylindrical) sub-geometry
will be inserted in the geometry (see \Fig{cluster}).
\item[\dusa{NAMPIN}] array of cylindrical sub-geometry {\tt character*12} name
representing a pin. This sub-geometry must be of type \moc{TUBE}, \moc{TUBEX},
\moc{TUBEY} or \moc{TUBEZ}.
\item[\moc{MIX-NAMES}] keyword to specify character names to material mixtures.
By default, the material mixtures are not named.
\item[\dusa{NAMMIX}] array of {\tt character*12} names for the material
mixtures.
\end{ListeDeDescription}
\clearpage
\subsubsection{Double-heterogeneity}\label{sect:descDH}
The structure \dstr{descDH} provides the possibility to define a stochastic mixture of cylindrical or spherical micro-structures that can be distributed inside {\sl composite mixtures} of the current {\sl macro-geometry}. A composite mixture is represented by a {\sl material mixture index} with a value greater than \dusa{maxmix}, the maximum number of real mixtures. Each micro-structure can be composed of many micro-volumes.\cite{BIHET}
\begin{DataStructure}{Structure \dstr{descDH}}
$[$ \moc{BIHET} $\{$ \moc{TUBE} $|$ \moc{SPHE} $\}$ \dusa{nmistr}
\dusa{nmilg} \\
\hskip 1.0cm (\dusa{ns}(i),i=1,\dusa{nmistr}) \\
\hskip 1.0cm((\dusa{rs}(i,j),j=1,\dusa{ns}(i)+1),i=1,\dusa{nmistr})\\
\hskip 1.0cm(\dusa{milie}(i),i=1,\dusa{nmilg})\\
\hskip 1.0cm(\dusa{mixdil}(i),i=1,\dusa{nmilg})\\
\hskip 1.0cm( (\dusa{fract}(i,j),j=1,\dusa{nmistr})
( $[$(\dusa{mixgr}(i,j,k),k=1,\dusa{ns}(j))$]$,j=1,\dusa{nmistr}), i=1,\dusa{nmilg}) $]$
\end{DataStructure}
\noindent where
\begin{ListeDeDescription}{mmmmmmm}
\item[\moc{BIHET}] keyword to specify that the current macro-geometry is containing composite mixtures.
\item[\moc{TUBE}] keyword to specify that the micro-structures are of a
cylindrical geometry;
\item[\moc{SPHE}] keyword to specify that the micro-structures are of a
spherical geometry.
\item[\dusa{nmistr}] maximum number of micro-structure types in the composite mixtures. Each type of
micro-structure is characterized by its dimension and may have distinct
volumetric concentrations in each of the macro-geometry volumes. All the
micro-structures of a given type have the same nuclear properties in a given
macro-volume. The micro-structures of a given type may have different nuclear
properties within different macro-volumes.
\item[\dusa{nmilg}] number of composite mixtures. This is the number of material mixture indices of the macro-geometry with a value $>$\dusa{maxmix}.
\item[\dusa{ns}] array giving the number of sub-regions (tubes or spherical
shells) in the micro-structures. Each type of micro-structures may contain a
different number of micro-volumes.
\item[\dusa{rs}] array giving the radius of the tubes or spherical shells
making up the micro-structures. For each type of micro structure $i$, we will
have an initial radius of \dusa{rs}$(1,i)=0.0$.
\item[\dusa{milie}] array giving the indices used to defined composite mixtures in the macro-geometry. These composite mixture indices must be $>$\dusa{maxmix}.
\item[\dusa{mixdil}] array giving the mixture indices associated with the diluent in each composite mixtures of the macro-geometry. These values must be $\le$\dusa{maxmix}.
\item[\dusa{fract}] array of volumetric concentration ($V_{G}/V_{R}$) of
each micro-structures (volume $V_{G}$) in a given region (volume $V_{R}$) of the
macro-geometry.
\item[\dusa{mixgr}] array giving the mixture index associated with each
region of the micro-structures. Note that \dusa{mixgr} should be specified only
for the regions of the micro-structure which have a concentration
\dusa{fract}$>$0. These values must be $\le$\dusa{maxmix}.
\end{ListeDeDescription}
Examples of geometry definitions can be found in \Sect{ExGEOData}.
\subsubsection{Do-it-yourself geometries}\label{sect:descSIJ}
A {\sl do-it-yourself} geometry is an abstract representation of an assembly of arbitrary unit-cells defined in term of their probability of presence and of their probability to have a particular neighbor. Structure \dstr{descSIJ} is defined as
\begin{DataStructure}{Structure \dstr{descSIJ}}
$[$ \moc{POURCE} (\dusa{pcinl}(i),i=1,\dusa{lp}) $]$\\
$[$ \moc{PROCEL} ((\dusa{pijcel}(i,j),j=1,\dusa{lp}),i=1,\dusa{lp}) $]$
\end{DataStructure}
\noindent where
\begin{ListeDeDescription}{mmmmmmm}
\item[\moc{POURCE}] keyword to specify that a {\sl do-it-yourself} type
geometry is to be defined, that is to say a geometry resembling the multicell
geometry seen in APOLLO-1.\cite{apollo1} This option permits the interactions
between different arbitrarily arranged cells in an infinite lattice to be
treated. The cells are identified by the information
following the keyword \moc{CELL}. The user must ensure that the total number of
regions appearing in all the cells must be less than \dusa{maxreg}.
\item[\dusa{pcinl}] array giving the proportion of each cell type in the
lattice such that:
$$|\sum_{i=1}^{{\it lp}}{\it pcinl}(i)-1.|<10^{-5}$$
\item[\moc{PROCEL}] keyword to specify that in a {\sl do-it-yourself} type
geometry rather than using a statistical arrangement of cells, a pre-calculated
cell distribution is to be considered. If the \moc{POURCE} structure is
given without the \moc{PROCEL} structure, a {\sl statistical} approximation
is used, as defined in Ref.~\citen{apollo1}.
\item[\dusa{pijcel}] array giving the pre-calculated probability for a neutron
leaving a cell of type i to enter a cell of type j without crossing any other
cell. We require:
$$|S(i){\it pcinl}(i){\it pijcel}(i,j)-S(j){\it pcinl}(j) {\it
pijcel}(j,i)|<10^{-4}$$
\noindent where $S(i)$ and $S(j)$ are the exterior surfaces area of the cells of
type $i$ and $j$ respectively.
\end{ListeDeDescription}
Examples of geometry definitions can be found in \Sect{ExGEOData}.
\eject
|