1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/*
freesteam - IAPWS-IF97 steam tables library
Copyright (C) 2004-2009 John Pye
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#define FREESTEAM_BUILDING_LIB
#include "zeroin.h"
#include <math.h>
#include <stdio.h>
#ifndef DBL_EPSILON
#define DBL_EPSILON 2e-16
#endif
char zeroin_solve(ZeroInSubjectFunction *func, void *user_data, double lowerbound, double upperbound, double tol, double *solution, double *error){
double a, b, c; /* Abscissae, descr. see above. */
double fa;
double fb;
double fc;
a = lowerbound;
b = upperbound;
fa = (*func)(a,user_data);
fb = (*func)(b,user_data);
c = a;
fc = fa;
if(fa == 0.){
*error = 0.; /* used by getError */
*solution = a;
return 0;
}
/* Main iteration loop */
for (;;) {
double prev_step = b - a; /* Distance from the last but one to the last approximation */
double tol_act; /* Actual tolerance */
double p; /* Interpolation step is calculated in the form p/q; division */
double q; /* operations is delayed until the last moment */
double new_step; /* Step at this iteration */
if (fabs(fc) < fabs(fb)) {
a = b;
b = c;
c = a; /* Swap data for b to be the best approximation */
fa = fb;
fb = fc;
fc = fa;
}
/* DBL_EPSILON is defined in math.h */
tol_act = 2.0* DBL_EPSILON * fabs(b) + tol / 2.0;
new_step = (c - b) / 2.0;
if (fabs(new_step) <= tol_act || fb == 0.) {
*error = fb;
*solution = b;
return 0;
}
/* Decide if the interpolation can be tried */
if (fabs(prev_step) >= tol_act /* If prev_step was large enough and was in true direction, */
&& fabs(fa) > fabs(fb)) /* Interpolatiom may be tried */
{
register double t1, t2;
double cb;
cb = c - b;
if (a == c) {
/* If we have only two distinct points
then only linear interpolation can be applied */
t1 = fb / fa;
p = cb * t1;
q = 1.0 - t1;
} else {
/* Quadric inverse interpolation */
q = fa / fc;
t1 = fb / fc;
t2 = fb / fa;
p = t2 * (cb * q * (q - t1) - (b - a) * (t1 - 1.0));
q = (q - 1.0) * (t1 - 1.0) * (t2 - 1.0);
}
if (p > 0.) {
/* p was calculated with the opposite sign; make p positive- */
q = -q; /* and assign possible minus to q */
} else {
p = -p;
}
if (p < (0.75 * cb * q - fabs(tol_act * q) / 2.0)
&& p < fabs(prev_step * q / 2.0)
) {
/* If b+p/q falls in [b,c] and
isn't too large it is accepted */
new_step = p / q;
}
/* If p/q is too large then the bissection procedure can
reduce [b,c] range to more extent */
}
if (fabs(new_step) < tol_act) { /* Adjust the step to be not less */
if (new_step > 0.) /* than tolerance */
new_step = tol_act;
else
new_step = -tol_act;
}
a = b;
fa = fb; /* Save the previous approx. */
b += new_step;
fb = (*func)(b,user_data); /* Do step to a new approxim. */
if ((fb > 0. && fc > 0.)
|| (fb < 0. && fc < 0.)) {
c = a;
fc = fa; /* Adjust c for it to have a sign opposite to that of b */
}
}
/* (((we never arrive here))) */
}
|