summaryrefslogtreecommitdiff
path: root/Utilib/src/PLQPRO.f
blob: ed7958e3a90c02be8b30d54b52620e2b01f6e75c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
*DECK PLQPRO
      SUBROUTINE PLQPRO(N0,M1,MAXM,COUT,QUAD,APLUS,BPLUS,BINF,BSUP,XOBJ,
     > F,EPS,IMPR,IERR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Minimizes a quadratic programming problem using LEMKE pivot.
* PLQPRO=Quadratic PROgramming problem resolution.
* The objective function is (1/2)X^T QUAD X + COUT^T X.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): 
* A. Hebert
*
*Parameters: input
* N0      number of control variables.
* M1      number of constraints.
* MAXM    first dimension of matrix APLUS.
* COUT    costs of control variables.
* QUAD    quadratic matrix for the objective function. QUAD is assumed
*         to be symmetric positive definite.
* APLUS   coefficient matrix for the linear constraints.
* BPLUS   right hand sides corresponding to the coefficient matrix.
* BINF    lower bounds of control variables.
* BSUP    upper bounds of control variables.
* EPS     tolerence used for pivoting.
* IMPR    print flag.
*
*Parameters: ouput
* XOBJ    control variables.
* F       objective function.
* IERR    return code (=0: normal completion).
*
*-----------------------------------------------------------------------
*
      IMPLICIT NONE
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER       N0,M1,MAXM,IMPR,IERR
      DOUBLE PRECISION  BPLUS(M1),BINF(N0),BSUP(N0),XOBJ(N0),EPS,
     >                  APLUS(MAXM,N0),COUT(N0),QUAD(N0,N0),F
*----
*  LOCAL VARIABLES
*----
      INTEGER       N,NP1,NP2,I,J,II,IR
      DOUBLE PRECISION  XVAL
      CHARACTER*4   ROW(7)
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IROW,ICOL
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: P
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IROW(2*N0+M1),ICOL(2*N0+M1+1))
      ALLOCATE(P(2*N0+M1,2*N0+M1+2))
*----
*  CHECK SYMMETRY OF MATRIX QUAD.
*----
      DO I=1,N0
         DO J=I+1,N0
           IF(ABS(QUAD(I,J)-QUAD(J,I)).GT.EPS) THEN
             IERR=10 ! matrix QUAD is not symmetric
             WRITE(6,1000) IERR
             GO TO 500
           ENDIF
         ENDDO
      ENDDO
*----
*  SET-UP AND SOLVE THE PARAMETRIC COMPLEMENTARITY PROBLEM.
*----
      N=2*N0+M1
      NP1=N+1
      NP2=N+2
*
      P(:N,:NP2)=0.0D0
      DO I=1,N0
         P(:N0,:N0)=QUAD(:N0,:N0)
         XVAL=0.0D0
         DO J=1,N0
            XVAL=XVAL-QUAD(I,J)*BINF(J)
         ENDDO
         P(I,NP2)=COUT(I)-XVAL
         P(N0+M1+I,NP2)=BSUP(I)-BINF(I)
         P(I,N0+M1+I)=1.0D0
         P(N0+M1+I,I)=-1.0D0
         DO J=1,M1
            P(I,N0+J)=APLUS(J,I)
         ENDDO
      ENDDO
*
      DO I=1,M1
         XVAL=0.0D0
         DO J=1,N0
            XVAL=XVAL+APLUS(I,J)*BINF(J)
         ENDDO
         P(N0+I,NP2)=BPLUS(I)-XVAL
         DO J=1,N0
            P(N0+I,J)=-APLUS(I,J)
         ENDDO
      ENDDO
*
      DO I=1,N
         IROW(I)= I
         ICOL(I)=-I
         P(I,NP1)=1.0D0
      ENDDO
      ICOL(NP1)=-NP1
*
      CALL PLLEMK(N,NP2,EPS,IMPR,P,IROW,ICOL,IERR)
      IF (IERR.GE.1) THEN
         WRITE(6,1000) IERR
         GO TO 500
      ENDIF
*
      IF(IMPR.GE.3) THEN
         WRITE(6,2000)
         DO I=1,N,7
            II=MIN0(I+6,N)
            DO J=I,II
               IF (IROW(J).LT.0) THEN
                  WRITE (ROW(J-I+1),'(1HX,I3.3)') (-IROW(J))
               ELSE
                  WRITE (ROW(J-I+1),'(1HY,I3.3)') IROW(J)
               ENDIF
            ENDDO
            WRITE(6,3000) (ROW(J-I+1),P(J,NP2),J=I,II)
         ENDDO
      ENDIF
*
      XOBJ(:N0)=BINF(:N0)
      DO I=1,N
         IR=-IROW(I)
         IF ((IR.GT.0).AND.(IR.LE.N0)) THEN
            XOBJ(IR)=BINF(IR)+P(I,NP2)
         ENDIF
      ENDDO
      F=DOT_PRODUCT(COUT(:N0),XOBJ(:N0))
      XVAL=DOT_PRODUCT(MATMUL(QUAD(:N0,:N0),XOBJ(:N0)),XOBJ(:N0))
      F=F+0.5*XVAL
*----
*  SCRATCH STORAGE DEALLOCATION
*----
  500 DEALLOCATE(P)
      DEALLOCATE(ICOL,IROW)
      RETURN
*
 1000 FORMAT(//,5X,'PLQPRO: FAILURE OF THE LINEAR COMPLEMENTARITY SO',
     > 'LUTION (IERR=',I5,').')
 2000 FORMAT(//,5X,'SOLUTION OF THE LINEAR COMPLEMENTARITY PROBLEM :',
     > '*** X: KUHN-TUCKER MULTIPLIERS ;',5X,
     > '*** Y: SLACK VARIABLES ',/)
 3000 FORMAT(7(1X,A4,'=',E12.5),/)
      END