1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
*DECK MSRLUS
SUBROUTINE MSRLUS2(LFORW,N,LC,LC0,IM,MCU,IM0,MCU0,JU,ILUDF,ILUCF,
1 CF,XIN,XOUT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve LU y = x where LU is stored in the "L\U-I" form in MSR format.
* Can be use "in-place" i.e. XOUT=XIN.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* LFORW flag set to .false. to transpose the coefficient matrix.
* N order of the system.
* LC dimension of MCU.
* LC0 dimension of MCU0.
* IM elements of row i in MCU(IM(i):IM(i+1)-1) for CF.
* MCU
* IM0 elements of row i in MCU0(IM0(i):IM0(i+1)-1) for ILUCF.
* MCU0
* JU MCU(JU(i):IM(i+1)) corresponds to U.
* MCU(IM(i)+1:JU(i)-1) correspond to L.
* ILUDF diagonal elements of U (inversed diagonal).
* ILUCF non-diagonal elements of U which differs from CF.
* CF non-diagonal elements of the original matrix.
* XIN input vector x.
*
*Parameters: output
* XOUT output vector y.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*---
* SUBROUTINE ARGUMENTS
*---
INTEGER N,LC,LC0,IM(N+1),MCU(LC),IM0(N+1),MCU0(LC0),JU(N)
REAL ILUDF(N),ILUCF(LC0),CF(LC)
DOUBLE PRECISION XIN(N),XOUT(N)
LOGICAL LFORW
*---
* LOCAL VARIABLES
*---
INTEGER I,J,IJ,IK
REAL ICFIJ
IF(LFORW) THEN
*---
* FORWARD SOLVE
*---
DO I=1,N
XOUT(I)=XIN(I)
DO IJ=IM(I)+1,JU(I)-1
J=MCU(IJ)
IF ((J.GT.0).AND.(J.LE.N)) THEN
DO IK=IM0(I)+1,IM0(I+1)
IF (MCU0(IK).EQ.J) THEN
ICFIJ=ILUCF(IK)
GOTO 10
ENDIF
ENDDO
ICFIJ=ILUDF(J)*CF(IJ)
10 CONTINUE
XOUT(I)=XOUT(I)-ICFIJ*XOUT(J)
ENDIF
ENDDO
ENDDO
*---
* BACKWARD SOLVE
*---
DO I=N,1,-1
DO IJ=JU(I),IM(I+1)
J=MCU(IJ)
IF ((J.GT.0).AND.(J.LE.N)) THEN
DO IK=IM0(I)+1,IM0(I+1)
IF (MCU0(IK).EQ.J) THEN
ICFIJ=ILUCF(IK)
GOTO 20
ENDIF
ENDDO
ICFIJ=CF(IJ)
20 CONTINUE
XOUT(I)=XOUT(I)-ICFIJ*XOUT(J)
ENDIF
ENDDO
XOUT(I)=ILUDF(I)*XOUT(I)
ENDDO
ELSE
*---
* FORWARD SOLVE
*---
DO I=1,N
XOUT(I)=XIN(I)
ENDDO
DO I=1,N
DO IJ=JU(I),IM(I+1)
J=MCU(IJ)
IF ((J.GT.0).AND.(J.LE.N)) THEN
DO IK=IM0(I)+1,IM0(I+1)
IF (MCU0(IK).EQ.J) THEN
ICFIJ=ILUCF(IK)
GOTO 30
ENDIF
ENDDO
ICFIJ=ILUDF(I)*CF(IJ)
30 CONTINUE
XOUT(J)=XOUT(J)-ICFIJ*XOUT(I)
ENDIF
ENDDO
ENDDO
*---
* BACKWARD SOLVE
*---
DO I=N,1,-1
XOUT(I)=ILUDF(I)*XOUT(I)
DO IJ=IM(I)+1,JU(I)-1
J=MCU(IJ)
IF ((J.GT.0).AND.(J.LE.N)) THEN
DO IK=IM0(I)+1,IM0(I+1)
IF (MCU0(IK).EQ.J) THEN
ICFIJ=ILUCF(IK)
GOTO 40
ENDIF
ENDDO
ICFIJ=CF(IJ)
40 CONTINUE
XOUT(J)=XOUT(J)-ILUDF(J)*ICFIJ*XOUT(I)
ENDIF
ENDDO
ENDDO
ENDIF
*
RETURN
END
|