summaryrefslogtreecommitdiff
path: root/Utilib/src/MSRLUS2.f
blob: d50c33b707abb32f83c43a38e1f80e8452dd0f06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
*DECK MSRLUS
      SUBROUTINE MSRLUS2(LFORW,N,LC,LC0,IM,MCU,IM0,MCU0,JU,ILUDF,ILUCF,
     1                   CF,XIN,XOUT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve LU y = x where LU is stored in the "L\U-I" form in MSR format.
* Can be use "in-place" i.e. XOUT=XIN.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* LFORW   flag set to .false. to transpose the coefficient matrix.
* N       order of the system.
* LC      dimension of MCU.
* LC0     dimension of MCU0.
* IM      elements of row i in MCU(IM(i):IM(i+1)-1) for CF.
* MCU
* IM0     elements of row i in MCU0(IM0(i):IM0(i+1)-1) for ILUCF.
* MCU0
* JU      MCU(JU(i):IM(i+1)) corresponds to U.
*         MCU(IM(i)+1:JU(i)-1) correspond to L.
* ILUDF   diagonal elements of U (inversed diagonal).
* ILUCF   non-diagonal elements of U which differs from CF.
* CF      non-diagonal elements of the original matrix. 
* XIN     input vector x. 
*    
*Parameters: output
* XOUT    output vector y.
*
*-----------------------------------------------------------------------
*
      IMPLICIT NONE
*---
* SUBROUTINE ARGUMENTS
*---
      INTEGER N,LC,LC0,IM(N+1),MCU(LC),IM0(N+1),MCU0(LC0),JU(N)
      REAL ILUDF(N),ILUCF(LC0),CF(LC)
      DOUBLE PRECISION XIN(N),XOUT(N)
      LOGICAL LFORW
*---
* LOCAL VARIABLES
*---
      INTEGER I,J,IJ,IK
      REAL ICFIJ
      IF(LFORW) THEN
*---
* FORWARD SOLVE
*---
        DO I=1,N
           XOUT(I)=XIN(I)
           DO IJ=IM(I)+1,JU(I)-1
              J=MCU(IJ)
              IF ((J.GT.0).AND.(J.LE.N)) THEN
                 DO IK=IM0(I)+1,IM0(I+1)
                    IF (MCU0(IK).EQ.J) THEN
                       ICFIJ=ILUCF(IK)
                       GOTO 10
                    ENDIF
                 ENDDO
                 ICFIJ=ILUDF(J)*CF(IJ)
 10              CONTINUE
                 XOUT(I)=XOUT(I)-ICFIJ*XOUT(J)
              ENDIF
           ENDDO
        ENDDO
*---
* BACKWARD SOLVE
*---
        DO I=N,1,-1
           DO IJ=JU(I),IM(I+1)
              J=MCU(IJ)
              IF ((J.GT.0).AND.(J.LE.N)) THEN
                 DO IK=IM0(I)+1,IM0(I+1)
                    IF (MCU0(IK).EQ.J) THEN
                       ICFIJ=ILUCF(IK)
                       GOTO 20
                    ENDIF
                 ENDDO
                 ICFIJ=CF(IJ)
 20              CONTINUE
                 XOUT(I)=XOUT(I)-ICFIJ*XOUT(J)
              ENDIF
           ENDDO
           XOUT(I)=ILUDF(I)*XOUT(I)
        ENDDO
      ELSE
*---
* FORWARD SOLVE
*---
        DO I=1,N
           XOUT(I)=XIN(I)
        ENDDO
        DO I=1,N
           DO IJ=JU(I),IM(I+1)
              J=MCU(IJ)
              IF ((J.GT.0).AND.(J.LE.N)) THEN
                 DO IK=IM0(I)+1,IM0(I+1)
                    IF (MCU0(IK).EQ.J) THEN
                       ICFIJ=ILUCF(IK)
                       GOTO 30
                    ENDIF
                 ENDDO
                 ICFIJ=ILUDF(I)*CF(IJ)
 30              CONTINUE
                 XOUT(J)=XOUT(J)-ICFIJ*XOUT(I)
              ENDIF
           ENDDO
        ENDDO
*---
* BACKWARD SOLVE
*---
        DO I=N,1,-1
           XOUT(I)=ILUDF(I)*XOUT(I)
           DO IJ=IM(I)+1,JU(I)-1
              J=MCU(IJ)
              IF ((J.GT.0).AND.(J.LE.N)) THEN
                 DO IK=IM0(I)+1,IM0(I+1)
                    IF (MCU0(IK).EQ.J) THEN
                       ICFIJ=ILUCF(IK)
                       GOTO 40
                    ENDIF
                 ENDDO
                 ICFIJ=CF(IJ)
 40              CONTINUE
                 XOUT(J)=XOUT(J)-ILUDF(J)*ICFIJ*XOUT(I)
              ENDIF
           ENDDO
        ENDDO
      ENDIF
*
      RETURN
      END