1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
!
!-----------------------------------------------------------------------
!
!Purpose:
! Heavy water properties
!
!Copyright:
! Copyright (C) 2018 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modIFy it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version.
!
!Author(s): G. Marleau and A. Hebert
!
!-----------------------------------------------------------------------
!
subroutine THMHSP(p, t)
! return the saturation pressure (Pa) as a function of the temperature (K)
! Ref: Ji. Zhang, January 20, 98
real :: p, t
double precision :: tcd,zd,pd
character hsmg*131
!
tcd=dble(t-273.16)
pd=0.0D0
IF(tcd .LT. 90.5D0 .OR. tcd.GT.370.74D0) THEN
WRITE(hsmg,*) 'THMHSP: T =',tcd,'C exceeds the valid temperature range', &
& ' for automatic pressure evaluation (90.5<T<370.74)'
call XABORT(hsmg)
ELSEIF (tcd .GT. 320.0D0) THEN
zd = (tcd - 320.0D0)/46.0D0
pd = 11.442428D6 + (7.0289472D6 + 1.7422423D6*zd)*zd &
+ 0.2384117D6*zd**3.680D0
ELSEIF (tcd .GT. 252.0D0) THEN
zd = (tcd - 252.0D0)/68.0D0
pd = 4.1333143D6 + (4.75435D6 + 2.124772D6*zd)*zd &
+ 0.4299918D6*zd**3.2250D0
ELSEIF (tcd .GT. 179.0D0) THEN
zd = (tcd - 179.0D0)/73.0D0
pd = 0.9682855D6 + (1.6569005D6 + 1.1322316D6*zd)*zd &
+ 0.3758966D6*zd**3.1460D0
ELSEIF (tcd .GT. 127.0D0) THEN
zd = (tcd - 127.0D0)/52.0D0
pd =0.2385152D6 + (0.384338812D6 + 0.2559459D6*zd)*zd &
+ 0.089485567D6*zd**3.1740D0
ELSE
zd = (tcd - 90.50D0)/36.50D0
pd =0.06736076D6 + (0.09519366D6 + 0.05709235D6*zd)*zd &
+ 0.01886846D6*zd**3.2010D0
ENDIF
p =real(pd)
end subroutine THMHSP
!
subroutine THMHST(p, t)
! return the saturation temperature (K) as a function of the pressure (Pa)
! Ref: Ji. Zhang, January 20, 98
real :: p, t
double precision :: pd,z,td
character hsmg*131
!
pd=p
td=0.0d0
IF (0.0741494D6 .GT. pd .OR. pd .GT. 21.2082144D6) THEN
WRITE(hsmg,*) 'THMHST: P =',pd,'Pa exceeds the valid pressure range', &
& ' for temperature evaluation (0.0741494<P<21.2082144) MPa'
call XABORT(hsmg)
ELSEIF (pd .GT. 6.9829216D6) THEN
z = (pd - 6.9829216D6)/14.2252928D6
td = 2.85D2 + (136.2916149D0 - 517.5749172D0*z)*z &
+ 465.2833023D0*z**2.0509579D0
ELSEIF (pd .GT. 2.2074482D6) THEN
z = (pd - 2.2074482D6)/4.7754734D6
td = 2.175D2 + (110.6079115D0 - 414.5685862D0*z)*z &
+ 371.4606747D0*z**2.0575065D0
ELSEIF (pd .GT. 0.6891798D6) THEN
z = (pd - 0.6891798D6)/1.5182684D6
td = 1.65D2 + (87.5356881D0 - 423.3068041D0*z)*z &
+ 388.271116D0*z**2.0455901D0
ELSEIF (pd .GT. 0.2241012D6) THEN
z = (pd - 0.2241012D6)/0.4650786D6
td = 1.25D2 + (66.1987487D0 - 225.285045D0*z)*z &
+ 199.0862962D0*z**2.0653628D0
ELSE
z = (pd - 0.0741494D6)/0.1499518D6
td = 9.3D1 + (53.0754191D0 - 165.0407938D0*z)*z &
+ 143.9653747D0*z**2.0723743D0
ENDIF
t=REAL(td)+273.16
end subroutine THMHST
!
subroutine THMHPT(p, t, rho, h, zk, zmu, cp)
! return the remaining thermohydraulics parameters as a function of the pressure (Pa)
! and temperature (K)
! Ref: Ji. Zhang, January 20, 98
use, intrinsic :: iso_c_binding
implicit real*8(a-h,o-z)
real :: p, t, rho, h, zk, zmu, cp, ps
interface
subroutine free_pT (pd, td, rhod, hd, zkd, zmud, cpd) bind(c, name='free_pT')
use, intrinsic :: iso_c_binding
real(c_double) :: pd, td, rhod, hd, zkd, zmud, cpd
end subroutine free_pT
end interface
!
tcd=dble(t-273.16)
pd=dble(p)
call THMHSP(ps, t)
psd=dble(ps)
!
! compute density in kg/m3
drho=0.0d0
IF (90.50D0 .GT. tcd .OR. tcd .GT. 369.0D0) THEN
call XABORT('THMHPT: exceed the valid temperature range')
ELSEIF (tcd .LT. 307.50D0) THEN
zd = (tcd - 90.50D0)/217.0D0
drho = 1.07065471D3 - (0.1611572D3 + 0.12188254D3*zd)*zd &
- 0.2106382D2*zd**6.830
ELSEIF (tcd .LT. 350.0D0) THEN
zd = (tcd - 307.50D0)/42.50D0
drho = 0.7665511D3 - (0.1074816D3 + 0.2506107D2*zd)*zd &
- 0.1042465D2*zd**4.640
ELSEIF (tcd .LT. 364.0D0) THEN
zd = (tcd - 350.0D0)/14.0D0
drho = 0.6235838D3 - (0.0678503D3 + 0.01551348D3*zd)*zd &
- 0.7259508D1*zd**4.470
ELSE
zd = (tcd - 364.0D0)/4.50D0
drho = 0.5329606D3 - (0.4286569D2 + 0.1064107D2*zd)*zd &
- 0.4761284D1*zd**5
ENDIF
A = (0.91725D0+0.61D-7*(drho-825.0D0)**2)*(drho+103.65D0)-drho
B = 0.12D-6*psd-0.3D0
DT = 1.0D6*(370.74D0-tcd)
RR = (B+DT/(22.13D6 - psd))/(B+DT/(pd - psd))
rho = REAL((drho+(A*RR)))
!
! compute specific enthalpy, in J/kg
IF (90.5D0 .GT. tcd .OR. tcd .GT. 358.5D0) THEN
call XABORT('THMHPT: exceed the valid temperature range(1).')
ELSEIF (p .GT. 22.131475E6) THEN
call XABORT('THMHPT: exceed the valid pressure range(1).')
ELSE
H0=0.0d0
IF (tcd .LT. 257.5D0) THEN
Z = (tcd - 90.5D0)/167.D0
H0 = 365.515323D0 + (696.60209D0 - 9.3229851D0*Z)*Z &
+ 30.7092221D0*Z**3.535D0
ELSEIF (tcd .LT. 340.D0) THEN
Z = (tcd - 257.5D0)/82.5D0
H0 = 1083.50185D0 + (388.54695D0 + 40.6830346D0*Z)*Z &
+ 21.4058154D0*Z**4.79D0
ELSEIF (tcd .LT. 364.D0) THEN
Z = (tcd - 340.D0)/24.D0
H0 = 1534.137695D0 + (166.53D0 + 27.8460448D0*Z)*Z &
+ 15.9652752D0*Z**5.67D0
ELSE
Z = (tcd - 364.D0)/5.D0
H0 = 1744.47897D0 + (65.11525D0 + 15.3342016D0*Z)*Z &
+ 8.2093984D0*Z**5.74D0
ENDIF
A = (0.9769D0 - 0.695D-6*(tcd - 199.4D0)**2)*(H0+27.93D0) - H0
B = 0.13D-1*tcd - 2.D0
DT = 1.D06*(370.74D0 - tcd)
HH = (B + DT/(22.131475D06 - psd))/(B+DT/(pd - psd))
h = REAL(H0 + A*HH)*1.0E3
ENDIF
!
! compute specific heat capacity, in J/kg.K
IF (90.5 .GT. tcd .OR. tcd .GT. 354.5) THEN
call XABORT('THMHPT: exceed the valid temperature range(2).')
ELSEIF (p .GT. 20.06E6) THEN
call XABORT('THMHPT: exceed the valid pressure range(2).')
ELSE
CP0=0.0d0
IF (tcd .LT. 216.D0) THEN
Z = (tcd - 90.5D0)/125.5D0
CP0 = 0.2398399D0 + (0.7260874D-2 - 0.8715753D-2*Z)*Z &
- 0.1067229D-1*Z**2.43D0
CP0 = 1.D0/CP0
ELSEIF (tcd .LT. 289.D0) THEN
Z = (tcd - 216.D0)/73.D0
CP0 = 4.3914986D0 + (0.4050098D0 + 0.2650923D0*Z)*Z &
+ 0.152426D0*Z**4.26D0
ELSEIF (tcd .LT. 334.D0) THEN
Z = (tcd - 289.D0)/45.D0
CP0 = 0.1917903D0 - (0.3592811D-1 + 0.1396726D-1*Z)*Z &
- 0.5187553D-2*Z**4.07D0
CP0 = 1.D0/CP0
ELSEIF (tcd .LT. 357.D0) THEN
Z = (tcd - 334.D0)/23.D0
CP0 = 0.1367074D0 - (0.4343216D-1 + 0.1360508D-1*Z)*Z &
- 0.5536208D-2*Z**3.82D0
CP0 = 1.D0/CP0
ELSE
Z = (tcd - 357.D0)/9.5D0
CP0 = 0.07413399D0 - (0.3791352D-1 + 0.6539416D-2*Z)*Z &
- 0.2756629D-2*Z**2.58D0
CP0 = 1.D0/CP0
ENDIF
A = -0.19878D0 + (1.521D0 - 0.393D0*CP0)*CP0
B = -0.293594D0 + (0.45876D0 + 0.57448D-02*CP0)*CP0
DT = 1.D06*(370.74D0 - tcd)
CC = B + DT/(pd - psd)
cp = REAL(CP0 + A/CC)*1.0E3
ENDIF
!
! use thermal conductivity and dynamic viscosity of light water
td=dble(t)
call free_pT(pd, td, rhod, hd, zkd, zmud, cpd)
zk=real(zkd)
zmu=real(zmud)
end subroutine THMHPT
!
subroutine THMHTX(t, x, rho, h, zk, zmu, cp)
! return the remaining thermohydraulics parameters as a function of the temperature (K)
! and quality
! Ref: Ji. Zhang, January 20, 98
use, intrinsic :: iso_c_binding
implicit real*8(a-h,o-z)
real :: t, x, rho, h, zk, zmu, cp
interface
subroutine free_Tx (td, xd, rhod, hd, zkd, zmud, cpd) bind(c, name='free_Tx')
use, intrinsic :: iso_c_binding
real(c_double) :: td, xd, rhod, hd, zkd, zmud, cpd
end subroutine free_Tx
end interface
!
tcd=dble(t-273.16)
RO = 0.0D0
H0 = 0.0D0
CP0 = 0.0D0
IF (x.EQ.0.0) THEN
! saturated liquid
if (90.5D0 .GT. tcd .OR. tcd .GT. 367.D0) then
call XABORT('THMHTX: the valid range of temperature is exceeded(1).')
ENDIF
!
! compute density in kg/m3
IF (tcd .LT. 307.5D0) then
Z = (tcd - 90.5D0)/217.D0
RO = 1.07065471D3 - (0.1611572D3 + 0.12188254D3*Z)*Z &
- 0.2106382D2*Z**6.83D0
ELSEIF (tcd .LT. 350.D0) then
Z = (tcd - 307.5D0)/42.5D0
RO = 0.7665511D3 - (0.1074816D3 + 0.2506107D2*Z)*Z &
- 0.1042465D2*Z**4.64D0
ELSEIF (tcd .LT. 364.D0) then
Z = (tcd - 350.D0)/14.D0
RO = 0.6235838D3 - (0.0678503D3 + 0.01551348D3*Z)*Z &
- 0.7259508D1*Z**4.47D0
ELSE
Z = (tcd - 364.D0)/4.5D0
RO = 0.5329606D3 - (0.4286569D2 + 0.1064107D2*Z)*Z &
- 0.4761284D1*Z**5
ENDIF
!
! compute specific enthalpy, in J/kg
IF (tcd .LT. 257.5D0) then
Z = (tcd - 90.5D0)/167.D0
H0 = 365.515323D0 + (696.60209D0 - 9.3229851D0*Z)*Z &
+ 30.7092221D0*Z**3.535D0
ELSEIF (tcd .LT. 340.D0) then
Z = (tcd - 257.5D0)/82.5D0
H0 = 1083.50185D0 + (388.54695D0 + 40.6830346D0*Z)*Z &
+ 21.4058154D0*Z**4.79D0
ELSEIF (tcd .LT. 364.D0) then
Z = (tcd - 340.D0)/24.D0
H0 = 1534.137695D0 + (166.53D0 + 27.8460448D0*Z)*Z &
+ 15.9652752D0*Z**5.67D0
ELSE
Z = (tcd - 364.D0)/5.D0
H0 = 1744.47897D0 + (65.11525D0 + 15.3342016D0*Z)*Z &
+ 8.2093984D0*Z**5.74D0
ENDIF
!
! compute specific heat capacity at constant pressure, in J/kg/K
IF (tcd .LT. 216.D0) then
Z = (tcd - 90.5D0)/125.5D0
CP0 = 0.2398399D0 + (0.7260874D-2 - 0.8715753D-2*Z)*Z &
- 0.1067229D-1*Z**2.43D0
CP0 = 1.D0/CP0
ELSEIF (tcd .LT. 289.D0) then
Z = (tcd - 216.D0)/73.D0
CP0 = 4.3914986D0 + (0.4050098D0 + 0.2650923D0*Z)*Z &
+ 0.152426D0*Z**4.26D0
ELSEIF (tcd .LT. 334.D0) then
Z = (tcd - 289.D0)/45.D0
CP0 = 0.1917903D0 - (0.3592811D-1 + 0.1396726D-1*Z)*Z &
- 0.5187553D-2*Z**4.07D0
CP0 = 1.D0/CP0
ELSEIF (tcd .LT. 357.D0) then
Z = (tcd - 334.D0)/23.D0
CP0 = 0.1367074D0 - (0.4343216D-1 + 0.1360508D-1*Z)*Z &
- 0.5536208D-2*Z**3.82D0
CP0 = 1.D0/CP0
ELSE
Z = (tcd - 357.D0)/9.5D0
CP0 = 0.07413399D0 - (0.3791352D-1 + 0.6539416D-2*Z)*Z &
- 0.2756629D-2*Z**2.58D0
CP0 = 1.D0/CP0
ENDIF
ELSEIF (x.EQ.1.0) THEN
! saturated steam
IF (90.5D0 .GT. tcd .OR. tcd .GT. 367.D0) then
call XABORT('THMHTX: the valid range of temperature is exceeded(2).')
ENDIF
!
! compute density in kg/m3
IF (tcd .GT. 350.D0) then
Z = (tcd - 350.D0)/16.D0
RO = 7.5017113D0 - (2.7448665D0 - 0.4712976D-1*Z)*Z &
- 0.1461081D0*Z**5.45D0
RO = 1.D3/RO
ELSEIF (tcd .GT. 288.D0) then
Z = (tcd - 288.D0)/62.D0
RO = 23.2557129D0 - (24.2703096D0 - 12.7121893D0*Z)*Z &
- 4.1958813D0*Z**2.81D0
RO = 1.D3/RO
ELSEIF (tcd .GT. 221.D0) then
Z = (tcd - 221.D0)/67.D0
RO = 0.01319205D3 + (0.1687167D2 + 0.9533432D1*Z)*Z &
+ 0.3402844D1*Z**3.69D0
ELSEIF (tcd .GT. 147.5D0) then
Z = (tcd - 147.5D0)/73.5D0
RO = 0.2595185D1 + (0.4966204D1 + 0.3980025D1*Z)*Z &
+ 0.1650632D1*Z**3.382D0
ELSE
Z = (tcd - 90.5D0)/57.D0
RO = 0.451542D0 + (0.9337486D0 + 0.8179223D0*Z)*Z &
+ 0.3919721D0*Z**3.27D0
ENDIF
!
! compute specific enthalpy, in J/kg
IF (tcd .LT. 259.D0) then
Z = (tcd - 90.5D0)/168.5D0
H0 = 2465.02D0 + (257.038325D0 - 69.298269D0*Z)*Z &
- 59.547036D0*Z**3.39D0
ELSEIF (tcd .LT. 333.D0) then
Z = (tcd - 259.D0)/74.D0
H0 = 2593.21302D0 - (36.63666D0 + 70.6712028D0*Z)*Z &
- 26.1578672D0*Z**4.41D0
ELSEIF (tcd .LT. 359.D0) then
Z = (tcd - 333.D0)/26.D0
H0 = 2459.74729D0 - (103.06374D0 + 40.5743371D0*Z)*Z &
- 17.2902029D0*Z**4.76D0
ELSE
Z = (tcd - 359.D0)/8.5D0
H0 = 2298.81901D0 - (87.129505D0 + 27.7163491D0*Z)*Z &
- 14.0347359D0*Z**5.2D0
ENDIF
!
! compute specific heat capacity at constant pressure, in J/kg/K
IF (tcd .LT. 208.D0) then
Z = (tcd - 90.5D0)/117.5D0
CP0 = 1.8689755D0 + (0.3394869D0 + 0.2728998D0*Z)*Z &
+ 0.2686182D0*Z**3.507D0
ELSEIF (tcd .LT. 270.D0) then
Z = (tcd - 208.D0)/62.D0
CP0 = 2.7499805D0 + (0.9642085D0 + 0.4429098D0*Z)*Z &
+ 0.141205D0*Z**3.945D0
ELSEIF (tcd .LT. 339.D0) then
Z = (tcd - 270.D0)/69.D0
CP0 = 0.2326499D0 - (0.1449925D0 - 0.19935345D-2*Z)*Z &
- 0.441272D-2*Z**3.96D0
CP0 = 1.D0/CP0
ELSEIF (tcd .LT. 363.D0) then
Z = (tcd - 339.D0)/24.D0
CP0 = 0.08523823D0 - (0.5512341D-1 + 0.3706342D-2*Z)*Z &
- 0.2012056D-2*Z**4.26D0
ELSE
Z = (tcd - 363.D0)/4.D0
CP0 = 0.02439642D0 - (0.1185124D-1 + 0.4619397D-3*Z)*Z &
- 0.1003777D-3*Z**2.4D0
CP0 = 1.D0/CP0
ENDIF
ELSE
CALL XABORT('THMHTX: quality = 0.0 or 1.0 expected.')
ENDIF
rho = REAL(RO)
h = REAL(H0)*1.0E3
cp = REAL(CP0)*1.0E3
!
! use thermal conductivity and dynamic viscosity of light water
td=dble(t)
xd=dble(x)
call free_Tx(td, xd, rhod, hd, zkd, zmud, cpd)
zk=real(zkd)
zmu=real(zmud)
end subroutine THMHTX
|