1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
*DECK ALPRTB
SUBROUTINE ALPRTB(NOR,IINI,DEMT,IER,WEIGHT,BASEPT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* compute a probability table preserving 2*NOR moments of a function
* using the modified Ribon approach.
*
*Copyright:
* Copyright (C) 1993 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NOR the number of moments to preserve is 2*NOR.
* IINI minimum order of the moment we want to preserve. we must
* have 2-2*NOR <= IINI <= 0 (order 0 and 1 moments are always
* preserved).
* DEMT moments.
*
*Parameters: output
* IER error flag (=0/=1 success/failure of the algorithm).
* WEIGHT weights of the probability table.
* BASEPT base points of the probability table.
*
*-----------------------------------------------------------------------
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NOR,IINI,IER
DOUBLE PRECISION DEMT(IINI:2*NOR+IINI-1)
REAL WEIGHT(NOR),BASEPT(NOR)
*----
* LOCAL VARIABLES
*----
PARAMETER (MAXNOR=20)
DOUBLE PRECISION DS(MAXNOR+1,MAXNOR+1),DDA(0:MAXNOR),DD,DSIGX
COMPLEX*16 ROOTS(MAXNOR),CCC,DCC,XCC
COMPLEX CGAR
LOGICAL LFAIL
*
IF(NOR.GT.MAXNOR) CALL XABORT('ALPRTB: STORAGE OVERFLOW.')
IF(NOR.LE.0) CALL XABORT('ALPRTB: NEGATIVE OR ZERO VALUE OF NOR.')
IF((2-2*NOR.GT.IINI).OR.(IINI.GT.0)) CALL XABORT('ALPRTB: INCONSI'
1 //'STENT VALUE OF IINI.')
*
* BUILD THE MATRIX.
DO 15 IOR=1,NOR
DS(IOR,NOR+1)=-DEMT(NOR+IOR+IINI-1)
DO 10 JOR=1,IOR
DS(IOR,JOR)=DEMT(IOR+JOR+IINI-2)
DS(JOR,IOR)=DEMT(IOR+JOR+IINI-2)
10 CONTINUE
15 CONTINUE
*
* L-D-L(T) FACTORIZATION OF THE MATRIX.
DO 40 I=1,NOR
DO 30 J=1,I-1
DS(J,I)=DS(I,J)
DO 20 K=1,J-1
DS(J,I)=DS(J,I)-DS(K,I)*DS(J,K)
20 CONTINUE
DS(I,J)=DS(J,I)*DS(J,J)
DS(I,I)=DS(I,I)-DS(J,I)*DS(I,J)
30 CONTINUE
IF(DS(I,I).EQ.0.D0) THEN
IER=1
RETURN
ENDIF
DS(I,I)=1.D0/DS(I,I)
40 CONTINUE
*
* SOLUTION OF THE FACTORIZED SYSTEM TO OBTAIN THE DENOMINATOR OF THE
* PADE APPROXIMATION.
DO 55 I=1,NOR
DO 50 K=1,I-1
DS(I,NOR+1)=DS(I,NOR+1)-DS(I,K)*DS(K,NOR+1)
50 CONTINUE
55 CONTINUE
DO 60 I=1,NOR
DS(I,NOR+1)=DS(I,NOR+1)*DS(I,I)
60 CONTINUE
DO 71 I=NOR,1,-1
DO 70 K=I+1,NOR
DS(I,NOR+1)=DS(I,NOR+1)-DS(K,I)*DS(K,NOR+1)
70 CONTINUE
71 CONTINUE
DS(NOR+1,NOR+1)=1.0D0
*
* COMPUTE THE BASE POINTS AS THE ROOTS OF THE DENOMINATOR.
CALL ALROOT(DS(1,NOR+1),NOR,ROOTS,LFAIL)
IF(LFAIL) CALL XABORT('ALPRTB: POLYNOMIAL ROOT FINDING FAILURE.')
DO 80 I=1,NOR
*
* NEWTON IMPROVEMENT OF THE ROOTS.
CCC=0.0D0
XCC=1.0D0
DO 74 J=0,NOR
CCC=CCC+DS(J+1,NOR+1)*XCC
XCC=XCC*ROOTS(I)
74 CONTINUE
DCC=0.0D0
XCC=1.0D0
DO 75 J=1,NOR
DCC=DCC+DS(J+1,NOR+1)*XCC*REAL(J)
XCC=XCC*ROOTS(I)
75 CONTINUE
ROOTS(I)=ROOTS(I)-CCC/DCC
*
CGAR=CMPLX(ROOTS(I))
IF(ABS(AIMAG(CGAR)).GT.1.0E-4*ABS(REAL(CGAR))) THEN
IER=1
RETURN
ELSE
BASEPT(I)=REAL(CMPLX(ROOTS(I)))
ENDIF
80 CONTINUE
*
* COMPUTE THE WEIGHTS.
DO 130 I=1,NOR
DSIGX=DBLE(ROOTS(I))
DDA(0)=1.0D0
J0=0
DO 100 J=1,NOR
IF(J.EQ.I) GO TO 100
J0=J0+1
DDA(J0)=DDA(J0-1)
DO 90 K=1,J0-1
DDA(J0-K)=DDA(J0-K-1)-DDA(J0-K)*DBLE(ROOTS(J))
90 CONTINUE
DDA(0)=-DDA(0)*DBLE(ROOTS(J))
100 CONTINUE
DD=0.0D0
DO 110 J=0,NOR-1
DD=DD+DDA(J)*DEMT((IINI-1)/2+J)
110 CONTINUE
DO 120 J=1,NOR
IF(J.NE.I) DD=DD/(DBLE(ROOTS(J))-DSIGX)
120 CONTINUE
WEIGHT(I)=REAL(((-1.0D0)**(NOR-1))*DD*DSIGX**((1-IINI)/2))
130 CONTINUE
*
* TEST THE CONSISTENCY OF THE SOLUTION.
DO 140 I=1,NOR
IF((WEIGHT(I).LE.0.0).OR.(BASEPT(I).LE.0.0)) THEN
IER=1
RETURN
ENDIF
140 CONTINUE
IER=0
RETURN
END
|