summaryrefslogtreecommitdiff
path: root/Utilib/src/ALPRTB.f
blob: 068066c1bbbbd756809a928c794b2338842e87b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
*DECK ALPRTB
      SUBROUTINE ALPRTB(NOR,IINI,DEMT,IER,WEIGHT,BASEPT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* compute a probability table preserving 2*NOR moments of a function
* using the modified Ribon approach.
*
*Copyright:
* Copyright (C) 1993 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NOR     the number of moments to preserve is 2*NOR.
* IINI    minimum order of the moment we want to preserve. we must
*         have 2-2*NOR <= IINI <= 0 (order 0 and 1 moments are always
*         preserved).
* DEMT    moments.
*
*Parameters: output
* IER     error flag (=0/=1 success/failure of the algorithm).
* WEIGHT  weights of the probability table.
* BASEPT  base points of the probability table.
*
*-----------------------------------------------------------------------
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NOR,IINI,IER
      DOUBLE PRECISION DEMT(IINI:2*NOR+IINI-1)
      REAL WEIGHT(NOR),BASEPT(NOR)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (MAXNOR=20)
      DOUBLE PRECISION DS(MAXNOR+1,MAXNOR+1),DDA(0:MAXNOR),DD,DSIGX
      COMPLEX*16 ROOTS(MAXNOR),CCC,DCC,XCC
      COMPLEX CGAR
      LOGICAL LFAIL
*
      IF(NOR.GT.MAXNOR) CALL XABORT('ALPRTB: STORAGE OVERFLOW.')
      IF(NOR.LE.0) CALL XABORT('ALPRTB: NEGATIVE OR ZERO VALUE OF NOR.')
      IF((2-2*NOR.GT.IINI).OR.(IINI.GT.0)) CALL XABORT('ALPRTB: INCONSI'
     1 //'STENT VALUE OF IINI.')
*
* BUILD THE MATRIX.
      DO 15 IOR=1,NOR
      DS(IOR,NOR+1)=-DEMT(NOR+IOR+IINI-1)
      DO 10 JOR=1,IOR
      DS(IOR,JOR)=DEMT(IOR+JOR+IINI-2)
      DS(JOR,IOR)=DEMT(IOR+JOR+IINI-2)
   10 CONTINUE
   15 CONTINUE
*
* L-D-L(T) FACTORIZATION OF THE MATRIX.
      DO 40 I=1,NOR
      DO 30 J=1,I-1
      DS(J,I)=DS(I,J)
      DO 20 K=1,J-1
      DS(J,I)=DS(J,I)-DS(K,I)*DS(J,K)
   20 CONTINUE
      DS(I,J)=DS(J,I)*DS(J,J)
      DS(I,I)=DS(I,I)-DS(J,I)*DS(I,J)
   30 CONTINUE
      IF(DS(I,I).EQ.0.D0) THEN
         IER=1
         RETURN
      ENDIF
      DS(I,I)=1.D0/DS(I,I)
   40 CONTINUE
*
* SOLUTION OF THE FACTORIZED SYSTEM TO OBTAIN THE DENOMINATOR OF THE
* PADE APPROXIMATION.
      DO 55 I=1,NOR
      DO 50 K=1,I-1
      DS(I,NOR+1)=DS(I,NOR+1)-DS(I,K)*DS(K,NOR+1)
   50 CONTINUE
   55 CONTINUE
      DO 60 I=1,NOR
      DS(I,NOR+1)=DS(I,NOR+1)*DS(I,I)
   60 CONTINUE
      DO 71 I=NOR,1,-1
      DO 70 K=I+1,NOR
      DS(I,NOR+1)=DS(I,NOR+1)-DS(K,I)*DS(K,NOR+1)
   70 CONTINUE
   71 CONTINUE
      DS(NOR+1,NOR+1)=1.0D0
*
* COMPUTE THE BASE POINTS AS THE ROOTS OF THE DENOMINATOR.
      CALL ALROOT(DS(1,NOR+1),NOR,ROOTS,LFAIL)
      IF(LFAIL) CALL XABORT('ALPRTB: POLYNOMIAL ROOT FINDING FAILURE.')
      DO 80 I=1,NOR
*
*     NEWTON IMPROVEMENT OF THE ROOTS.
      CCC=0.0D0
      XCC=1.0D0
      DO 74 J=0,NOR
      CCC=CCC+DS(J+1,NOR+1)*XCC
      XCC=XCC*ROOTS(I)
   74 CONTINUE
      DCC=0.0D0
      XCC=1.0D0
      DO 75 J=1,NOR
      DCC=DCC+DS(J+1,NOR+1)*XCC*REAL(J)
      XCC=XCC*ROOTS(I)
   75 CONTINUE
      ROOTS(I)=ROOTS(I)-CCC/DCC
*
      CGAR=CMPLX(ROOTS(I))
      IF(ABS(AIMAG(CGAR)).GT.1.0E-4*ABS(REAL(CGAR))) THEN
         IER=1
         RETURN
      ELSE
         BASEPT(I)=REAL(CMPLX(ROOTS(I)))
      ENDIF
   80 CONTINUE
*
* COMPUTE THE WEIGHTS.
      DO 130 I=1,NOR
      DSIGX=DBLE(ROOTS(I))
      DDA(0)=1.0D0
      J0=0
      DO 100 J=1,NOR
      IF(J.EQ.I) GO TO 100
      J0=J0+1
      DDA(J0)=DDA(J0-1)
      DO 90 K=1,J0-1
      DDA(J0-K)=DDA(J0-K-1)-DDA(J0-K)*DBLE(ROOTS(J))
   90 CONTINUE
      DDA(0)=-DDA(0)*DBLE(ROOTS(J))
  100 CONTINUE
      DD=0.0D0
      DO 110 J=0,NOR-1
      DD=DD+DDA(J)*DEMT((IINI-1)/2+J)
  110 CONTINUE
      DO 120 J=1,NOR
      IF(J.NE.I) DD=DD/(DBLE(ROOTS(J))-DSIGX)
  120 CONTINUE
      WEIGHT(I)=REAL(((-1.0D0)**(NOR-1))*DD*DSIGX**((1-IINI)/2))
  130 CONTINUE
*
* TEST THE CONSISTENCY OF THE SOLUTION.
      DO 140 I=1,NOR
      IF((WEIGHT(I).LE.0.0).OR.(BASEPT(I).LE.0.0)) THEN
         IER=1
         RETURN
      ENDIF
  140 CONTINUE
      IER=0
      RETURN
      END