1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
*DECK ALPLSF
SUBROUTINE ALPLSF(IMETH,N,X,Y,EPSRID,LREAL,NOR,A,B,PREC)
*
*-----------------------------------------------------------------------
*
*Purpose:
* compute the polynomial coefficients of a Pade approximation using a
* direct least square procedure.
*
*Copyright:
* Copyright (C) 1996 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMETH type of algorithm (=1: use QR; =2: use SVD; =3: use NNLS).
* N number of collocation points.
* X abscissa of the collocation points.
* Y ordinates of the collocation points.
* EPSRID epsilon used in polynomial simplification.
* LREAL selection flag (=.true. to get rid of complex roots).
*
*Parameters: output
* NOR order of the polynomials.
* A polynomial coefficients of the numerator of the Pade
* approximation. A(0) is the constant term.
* B polynomial coefficients of the denominator of the Pade
* approximation. B(0) is the constant term.
* DOUBLE PRECISION A(0:NOR),B(0:NOR)
* PREC accuracy of the fit.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IMETH,N,NOR
REAL X(N),Y(N),PREC
DOUBLE PRECISION EPSRID,A(0:(N-1)/2),B(0:(N-1)/2)
LOGICAL LREAL
*----
* LOCAL VARIABLES
*----
PARAMETER (MAXNOR=10,MAXPTS=99)
DOUBLE PRECISION BB(MAXPTS),GAR,PARAM(MAXPTS),AGAR(0:MAXNOR),
1 BGAR(0:MAXNOR),CGAR(0:MAXNOR+1),W(MAXPTS),RV1(MAXPTS),SGN,
2 GAROLD,YAPPR,RNORM,RMAX
COMPLEX*16 SIGX0(MAXNOR+1),SIGXW(MAXNOR+1),DDAGAR(0:MAXNOR),
1 DDBGAR(0:MAXNOR),WEIGH(MAXNOR+1),CC,DD,CCC,XCC,DCC
LOGICAL LFAIL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: AA,V
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(AA(MAXPTS,MAXPTS),V(MAXPTS,MAXPTS))
*
IF(N.GT.MAXPTS) CALL XABORT('ALPLSF: INSUFFICIENT MAXPTS.')
*
* NOR=0 CASE.
GAROLD=0.0
NOR=0
PREC=0.0
A(0)=DBLE(Y(N))
B(0)=1.0D0
DO 10 I=1,N-1
PREC=MAX(PREC,ABS(Y(N)/Y(I)-1.0))
10 CONTINUE
*
RMAX=1.0D10
DO 210 IINOR=1,MIN((N-1)/2,MAXNOR)
INOR=IINOR
IF(X(N).GE.0.99E10) THEN
DO 41 I=1,N-1
GAR=1.0D0
IOF=0
DO 20 J=0,INOR-1
IOF=IOF+1
AA(I,IOF)=GAR
GAR=GAR*X(I)
20 CONTINUE
GAR=1.0D0
DO 30 J=0,INOR-1
IOF=IOF+1
GAROLD=GAR
AA(I,IOF)=-GAR*Y(I)
GAR=GAR*X(I)
30 CONTINUE
BB(I)=(Y(I)-Y(N))*X(I)
DO 40 J=1,2*INOR
AA(I,J)=AA(I,J)/GAROLD
40 CONTINUE
41 CONTINUE
IF(IMETH.EQ.1) THEN
CALL ALST2F(MAXPTS,N-1,2*INOR,AA,RV1)
CALL ALST2S(MAXPTS,N-1,2*INOR,AA,RV1,BB,PARAM)
ELSE IF(IMETH.EQ.2) THEN
CALL ALSVDF(AA,N-1,2*INOR,MAXPTS,MAXPTS,W,V,RV1)
DO 45 J=1,2*INOR
IF(W(J).EQ.0.0D0) CALL XABORT('ALPLSF: SVD FAILURE(1).')
45 CONTINUE
CALL ALSVDS(AA,W,V,N-1,2*INOR,MAXPTS,MAXPTS,BB,PARAM,RV1)
ELSE IF(IMETH.EQ.3) THEN
CALL ALNNLS(AA,N-1,2*INOR,MAXPTS,MAXPTS,BB,PARAM,RNORM,MODE)
IF(MODE.NE.1) CALL XABORT('ALPLSF: NNLS FAILURE(1).')
IF((INOR.GT.1).AND.(RNORM.GE.0.95D0*RMAX)) GO TO 210
RMAX=RNORM
ENDIF
DO 50 I=0,INOR-1
AGAR(I)=PARAM(I+1)
BGAR(I)=PARAM(INOR+1+I)
50 CONTINUE
AGAR(INOR)=Y(N)
BGAR(INOR)=1.0D0
ELSE
DO 81 I=1,N
GAR=1.0D0
IOF=0
DO 60 J=0,INOR
IOF=IOF+1
AA(I,IOF)=GAR
GAR=GAR*X(I)
60 CONTINUE
GAR=1.0D0
DO 70 J=0,INOR-1
IOF=IOF+1
GAROLD=GAR
AA(I,IOF)=-GAR*Y(I)
GAR=GAR*X(I)
70 CONTINUE
BB(I)=Y(I)*X(I)
DO 80 J=1,2*INOR+1
AA(I,J)=AA(I,J)/GAROLD
80 CONTINUE
81 CONTINUE
IF(IMETH.EQ.1) THEN
CALL ALST2F(MAXPTS,N,2*INOR+1,AA,RV1)
CALL ALST2S(MAXPTS,N,2*INOR+1,AA,RV1,BB,PARAM)
ELSE IF(IMETH.EQ.2) THEN
CALL ALSVDF(AA,N,2*INOR+1,MAXPTS,MAXPTS,W,V,RV1)
DO 85 J=1,2*INOR
IF(W(J).EQ.0.0D0) CALL XABORT('ALPLSF: SVD FAILURE(2).')
85 CONTINUE
CALL ALSVDS(AA,W,V,N,2*INOR+1,MAXPTS,MAXPTS,BB,PARAM,RV1)
ELSE IF(IMETH.EQ.3) THEN
CALL ALNNLS(AA,N,2*INOR+1,MAXPTS,MAXPTS,BB,PARAM,RNORM,MODE)
IF(MODE.NE.1) CALL XABORT('ALPLSF: NNLS FAILURE(2).')
IF((INOR.GT.1).AND.(RNORM.GE.0.95D0*RMAX)) GO TO 210
RMAX=RNORM
ENDIF
DO 90 I=0,INOR
AGAR(I)=PARAM(I+1)
IF(I.EQ.INOR) THEN
BGAR(I)=1.0D0
ELSE
BGAR(I)=PARAM(INOR+2+I)
ENDIF
90 CONTINUE
ENDIF
*
* POLYNOMIAL SIMPLIFICATION.
DDAGAR(0)=AGAR(INOR)
DDBGAR(0)=BGAR(INOR)
CALL ALROOT(AGAR(0:INOR),INOR,SIGX0,LFAIL)
IF(LFAIL) GO TO 210
CALL ALROOT(BGAR(0:INOR),INOR,SIGXW,LFAIL)
IF(LFAIL) GO TO 210
IJINOR=1
95 XXX=REAL(ABS(DBLE(SIGXW(IJINOR))-DBLE(SIGX0(IJINOR))))
IF(XXX.LT.EPSRID*ABS(DBLE(SIGXW(IJINOR)))) THEN
INOR=INOR-1
DO 100 I=IJINOR,INOR
SIGX0(I)=SIGX0(I+1)
SIGXW(I)=SIGXW(I+1)
100 CONTINUE
ELSE IF((DBLE(SIGXW(IJINOR)).GT.EPSRID).AND.
> (DIMAG(SIGXW(IJINOR)).EQ.0.0).AND.
> (IMETH.EQ.3)) THEN
CALL XABORT('ALPLSF: NNLS FAILURE(3).')
ELSE IF((DBLE(SIGXW(IJINOR)).GT.0.1*EPSRID).AND.
> (DIMAG(SIGXW(IJINOR)).EQ.0.0)) THEN
GO TO 210
ELSE
IJINOR=IJINOR+1
ENDIF
IF(IJINOR.LE.INOR) GO TO 95
IF(INOR.LT.0) CALL XABORT('ALPLSF: ALGORITHM FAILURE.')
DO 120 I=1,INOR
DDAGAR(I)=DDAGAR(I-1)
DDBGAR(I)=DDBGAR(I-1)
DO 110 J=I-1,1,-1
DDAGAR(J)=DDAGAR(J-1)-DDAGAR(J)*SIGX0(I)
DDBGAR(J)=DDBGAR(J-1)-DDBGAR(J)*SIGXW(I)
110 CONTINUE
DDAGAR(0)=-DDAGAR(0)*SIGX0(I)
DDBGAR(0)=-DDBGAR(0)*SIGXW(I)
120 CONTINUE
DO 130 I=0,INOR
AGAR(I)=DBLE(DDAGAR(I))/DBLE(DDBGAR(INOR))
BGAR(I)=DBLE(DDBGAR(I))/DBLE(DDBGAR(INOR))
IF(AGAR(I).LE.0.0D0) GO TO 210
IF(BGAR(I).LE.0.0D0) GO TO 210
130 CONTINUE
SGN=1.0D0
CGAR(0)=AGAR(0)
DO 135 I=2,INOR+1
SGN=-SGN
CGAR(I-1)=SGN*(BGAR(I-2)+AGAR(I-1))
135 CONTINUE
CGAR(INOR+1)=-SGN
CALL ALROOT(CGAR(0:INOR+1),INOR+1,SIGX0,LFAIL)
IF(LFAIL) GO TO 210
*
* NEWTON IMPROVEMENT OF THE ROOTS.
DO 138 I=1,INOR+1
CCC=0.0D0
XCC=1.0D0
DO 136 J=0,INOR+1
CCC=CCC+CGAR(J)*XCC
XCC=XCC*SIGX0(I)
136 CONTINUE
DCC=0.0D0
XCC=1.0D0
DO 137 J=1,INOR+1
DCC=DCC+CGAR(J)*XCC*REAL(J)
XCC=XCC*SIGX0(I)
137 CONTINUE
SIGX0(I)=SIGX0(I)-CCC/DCC
138 CONTINUE
*
IF(LREAL) THEN
DO 140 I=1,INOR+1
IF(DBLE(SIGX0(I)).LT.1.0E-10) GO TO 210
IF(DIMAG(SIGX0(I)).NE.0.0) GO TO 210
140 CONTINUE
ENDIF
*
* COMPUTE THE WEIGHTS.
DO 170 I=1,INOR+1
CC=(1.0D0,0.0D0)
DD=0.0D0
DO 150 JNOR=0,INOR
DD=DD+BGAR(JNOR)*CC
CC=-CC*SIGX0(I)
150 CONTINUE
DO 160 J=1,INOR+1
IF(J.NE.I) DD=DD/(SIGX0(J)-SIGX0(I))
160 CONTINUE
WEIGH(I)=DD
170 CONTINUE
*
* TEST THE ACCURACY OF THE PADE APPROXIMATION.
PREC1=0.0
DO 190 I=1,N
CC=0.0D0
DD=0.0D0
DO 180 JNOR=1,INOR+1
CC=CC+WEIGH(JNOR)/(SIGX0(JNOR)+X(I))
DD=DD+WEIGH(JNOR)*SIGX0(JNOR)/(SIGX0(JNOR)+X(I))
180 CONTINUE
YAPPR=DBLE(DD/CC)
PREC1=MAX(PREC1,ABS(REAL(YAPPR)/Y(I)-1.0))
190 CONTINUE
*
IF(PREC1.LT.0.95*PREC) THEN
NOR=INOR
PREC=PREC1
DO 200 I=0,NOR
A(I)=AGAR(I)
B(I)=BGAR(I)
200 CONTINUE
ENDIF
210 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(V,AA)
RETURN
END
|