1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
*DECK ALLUM
SUBROUTINE ALLUM(L4,ASS,VEC,Z,MU1,IMA,ITY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* multiplication of a general matrix in compressed diagonal storage
* mode by a vector. Z=ASS*VEC
*
*Copyright:
* Copyright (C) 1989 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* L4 order of the coefficient matrix.
* ASS coefficient matrix in compressed diagonal storage mode.
* DIMENSION ASS(IMA(L4))
* VEC vector to multiply.
* Z vector that will be added to the result if ITY=2.
* MU1 position of each diagonal element in vector ASS.
* IMA position of the first non-zero column element in vector ASS.
* ITY type of multiplication (ITY=1: Z=ASS*VEC;
* ITY=2: Z=Z+(ASS-DIAG(ASS))*VEC).
*
*Parameters: output
* Z solution of the multiplication.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER L4,MU1(L4),IMA(L4),ITY
REAL ASS(*),VEC(L4),Z(L4)
*
GO TO (10,60),ITY
*
* CALCULATION OF Z=ASS*VEC.
10 KEY1=MU1(1)
Z(1)=ASS(KEY1)*VEC(1)
DO 50 I=2,L4
ZK=0.0
DO 30 J=IMA(I-1)-MU1(I)+I+1,I
KEY1=KEY1+1
ZK=ZK+ASS(KEY1)*VEC(J)
30 CONTINUE
Z(I)=ZK
ZK=VEC(I)
DO 40 J=I-1,MU1(I)+I-IMA(I),-1
KEY1=KEY1+1
Z(J)=Z(J)+ASS(KEY1)*ZK
40 CONTINUE
50 CONTINUE
RETURN
*
* CALCULATION OF Z=Z+(ASS-DIAG(ASS))*VEC.
60 KEY1=MU1(1)
DO 90 I=2,L4
DO 70 J=IMA(I-1)-MU1(I)+I+1,I-1
KEY1=KEY1+1
Z(I)=Z(I)+ASS(KEY1)*VEC(J)
70 CONTINUE
KEY1=KEY1+1
ZK=VEC(I)
DO 80 J=I-1,MU1(I)+I-IMA(I),-1
KEY1=KEY1+1
Z(J)=Z(J)+ASS(KEY1)*ZK
80 CONTINUE
90 CONTINUE
RETURN
END
|