1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
*DECK ALLUF
SUBROUTINE ALLUF(L4,ASS,MU1,IMA)
*
*-----------------------------------------------------------------------
*
*Purpose:
* LU factorization of a general positive definite matrix in compressed
* diagonal storage mode.
*
*Copyright:
* Copyright (C) 1989 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* L4 order of the coefficient matrix.
* ASS coefficient matrix in compressed diagonal storage mode.
* A(I,J)=ASS(MU1(I)-I+J) if J.le.I and J.gt.I+IMA(I-1)-MU1(I)
* =ASS(MU1(J)+J-I) if I.le.J and I.ge.J-IMA(J)+MU1(J)
* =0.0 else
* DIMENSION ASS(IMA(L4))
* MU1 position of each diagonal element in vector ASS.
* IMA position of the first non-zero column element in vector ASS.
*
*Parameters: output
* ASS LU factors.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER L4,MU1(L4),IMA(L4)
REAL ASS(*)
*
DO 120 I=2,L4
MU1IMI=MU1(I)-I
MU1IPI=MU1(I)+I
IND1=IMA(I-1)-MU1IMI+1
IND2=MU1IPI-IMA(I)
IF (IND1.LE.IND2) THEN
DO 20 J=IND1,IND2-1
MU1JPJ=MU1(J)+J
SUM=0.0
DO 10 K=MAX(IND1,MU1JPJ-IMA(J)),J-1
SUM=SUM+ASS(MU1IMI+K)*ASS(MU1JPJ-K)
10 CONTINUE
ASS(MU1IMI+J)=ASS(MU1IMI+J)-SUM
20 CONTINUE
DO 50 J=IND2,I-1
MU1JMJ=MU1(J)-J
MU1JPJ=MU1(J)+J
SUM=0.0
DO 30 K=MAX(IND1,MU1JPJ-IMA(J)),J-1
SUM=SUM+ASS(MU1IMI+K)*ASS(MU1JPJ-K)
30 CONTINUE
ASS(MU1IMI+J)=ASS(MU1IMI+J)-SUM
SUM=0.0
IF(J.GT.1) THEN
DO 40 K=MAX(IND2,IMA(J-1)-MU1JMJ+1),J-1
SUM=SUM+ASS(MU1JMJ+K)*ASS(MU1IPI-K)
40 CONTINUE
ENDIF
ASS(MU1IPI-J)=(ASS(MU1IPI-J)-SUM)/ASS(MU1JMJ+J)
50 CONTINUE
ELSE
DO 70 J=IND2,IND1-1
MU1JMJ=MU1(J)-J
SUM=0.0
IF(J.GT.1) THEN
DO 60 K=MAX(IND2,IMA(J-1)-MU1JMJ+1),J-1
SUM=SUM+ASS(MU1JMJ+K)*ASS(MU1IPI-K)
60 CONTINUE
ENDIF
ASS(MU1IPI-J)=(ASS(MU1IPI-J)-SUM)/ASS(MU1JMJ+J)
70 CONTINUE
DO 100 J=IND1,I-1
MU1JMJ=MU1(J)-J
MU1JPJ=MU1(J)+J
SUM=0.0
DO 80 K=MAX(IND1,MU1JPJ-IMA(J)),J-1
SUM=SUM+ASS(MU1IMI+K)*ASS(MU1JPJ-K)
80 CONTINUE
ASS(MU1IMI+J)=ASS(MU1IMI+J)-SUM
SUM=0.0
DO 90 K=MAX(IND2,IMA(J-1)-MU1JMJ+1),J-1
SUM=SUM+ASS(MU1JMJ+K)*ASS(MU1IPI-K)
90 CONTINUE
ASS(MU1IPI-J)=(ASS(MU1IPI-J)-SUM)/ASS(MU1JMJ+J)
100 CONTINUE
ENDIF
SUM=0.0
DO 110 K=MAX(IND1,IND2),I-1
SUM=SUM+ASS(MU1IMI+K)*ASS(MU1IPI-K)
110 CONTINUE
ASS(MU1IMI+I)=ASS(MU1IMI+I)-SUM
120 CONTINUE
RETURN
END
|