1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
*DECK ALGJP
SUBROUTINE ALGJP(NGPT,ZJKSI,WJKSI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* returns Gauss-Jacobi integration points and weights for integration
* between 0.0 and 1.0 to the order specified
*
*Copyright:
* Copyright (C) 1991 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Roy
*
*Reference:
* integral of X F(X) DX , from 0.0 to 1.0 is given by summ from i=1 to
* NGPT of F(ZJKSI(I))*WJKSI(I)
* the points ZGKSI and weights WJKSI are generated according
* to the technique described in Handbook of mathematical functions
* M. Abramowitz and I. Stegun, Dover Publication Inc. (1972).
*
*Parameters: input
* NGPT number of gauss-jacobi points
*
*Parameters: output
* ZGKSI integration points
* WGKSI integration weights
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NGPT
REAL ZJKSI(NGPT),WJKSI(NGPT)
*----
* LOCAL VARIABLES
*----
PARAMETER ( I1= 1, I2= 2, I3= 4, I4= 7, I5=11, I6=16,
> I7=22, I8=29,IFN=36)
REAL RZKSI(IFN),RWKSI(IFN)
C N=1
DATA (RZKSI(I),I=I1,I2-1) /0.6666666667/
DATA (RWKSI(I),I=I1,I2-1) /0.5000000000/
C N=2
DATA (RZKSI(I),I=I2,I3-1) /0.3550510257,0.8449489743/
DATA (RWKSI(I),I=I2,I3-1) /0.1819586183,0.3180413817/
C N=3
DATA (RZKSI(I),I=I3,I4-1) /.2123405382,.5905331356,.9114120405/
DATA (RWKSI(I),I=I3,I4-1) /.0698269799,.2292411064,.2009319137/
C N=4
DATA (RZKSI(I),I=I4,I5-1)
> /.1397598643,.4164095676,.7231569864,.9428958039/
DATA (RWKSI(I),I=I4,I5-1)
> /.0311809710,.1298475476,.2034645680,.1355069134/
C N=5
DATA (RZKSI(I),I=I5,I6-1) /.0985350858,.3045357266,
> .5620251898,.8019865821,.9601901429/
DATA (RWKSI(I),I=I5,I6-1) /.0157479145,.0739088701,
> .1463869871,.1671746381,.0967815902/
C N=6
DATA (RZKSI(I),I=I6,I7-1) /.0730543287,.2307661380,.4413284812,
> .6630153097,.8519214003,.9706835728/
DATA (RWKSI(I),I=I6,I7-1) /.0087383018,.0439551656,.0986611509,
> .1407925538,.1355424972,.0723103307/
C N=7
DATA (RZKSI(I),I=I7,I8-1) /.0562625605,.1802406917,.3526247171,
> .5471536263,.7342101772,.8853209468,.9775206136/
DATA (RWKSI(I),I=I7,I8-1) /.0052143622,.0274083567,.0663846965,
> .1071250657,.1273908973,.1105092582,.0559673634/
C N=8
DATA (RZKSI(I),I=I8,IFN) /.0446339553,.1443662570,.2868247571,
> .4548133152,.6280678354,.7856915206,.9086763921,.9822200949/
DATA (RWKSI(I),I=I8,IFN) /.0032951914,.0178429027,.0454393195,
> .0791995995,.1060473594,.1125057995,.0911190236,.0445508044/
*
IDEP=0
IFIN=0
IF( NGPT.EQ. 1 ) THEN
IDEP=I1
IFIN=I2-1
ELSE IF( NGPT.EQ. 2 ) THEN
IDEP=I2
IFIN=I3-1
ELSE IF( NGPT.EQ. 3 ) THEN
IDEP=I3
IFIN=I4-1
ELSE IF( NGPT.EQ. 4 ) THEN
IDEP=I4
IFIN=I5-1
ELSE IF( NGPT.EQ. 5 ) THEN
IDEP=I5
IFIN=I6-1
ELSE IF( NGPT.EQ. 6 ) THEN
IDEP=I6
IFIN=I7-1
ELSE IF( NGPT.EQ. 7 ) THEN
IDEP=I7
IFIN=I8-1
ELSE IF( NGPT.EQ. 8 ) THEN
IDEP=I8
IFIN=IFN
ELSE
XINF=0.0
XSUP=1.0
CALL ALGPT(NGPT,XINF,XSUP,ZJKSI,WJKSI)
ENDIF
IF(NGPT.LE.8) THEN
C------
C INITIALIZE ZJKSI AND WJKSI FROM DATA BASE
C------
IUP=1
DO 100 I=IDEP,IFIN
ZJKSI(IUP)=RZKSI(I)
WJKSI(IUP)=RWKSI(I)
IUP=IUP+1
100 CONTINUE
ELSE
C------
C USE GAUSS-LEGENDRE INTEGRATION POINTS INSTEAD OF GAUSS-JACOBI
C------
DO 110 I=1,NGPT
WJKSI(I)=WJKSI(I)*ZJKSI(I)
110 CONTINUE
ENDIF
RETURN
END
|