summaryrefslogtreecommitdiff
path: root/Utilib/src/ALCACT.f
blob: 9318176731e72653c14af1a8d9ea251367e43cd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
*DECK ALCACT
      SUBROUTINE ALCACT(LCACT,NG,XG,WG)
*
*-----------------------------------------------------------------------
*
*Purpose:
* set the weights and base points for the different polar quadrature:
* - "Cactus" (Halsall)
* - "optimized" (Leonard and extension by Le Tellier)
*
*Copyright:
* Copyright (C) 1999 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Roy and R. Le Tellier
*
*Reference:
* A. Leonard and C.T. Mc Daniel, "Optimal polar angles and weights for
* the characteristic method", Trans. Am. Nucl. Soc., 73, 172 (1995).
*
*Parameters: input
* LCACT   type of quadrature (=1,2: values used by Halsall in
*         Cactus (1980); =3: values proposed by Mc Daniel ng=2 only,
*         extended to 3 and 4 with the same approach by R. Le Tellier
*         in 06/2005)
* NG      number of weights/base points.
*
*Parameters: output
* XG      base points.
* WG      weights.
*
*-----------------------------------------------------------------------
*
      IMPLICIT NONE
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LCACT,NG
      REAL XG(NG),WG(NG)
*----
*  LOCAL VARIABLES
*----
      INTEGER  IG
      DOUBLE PRECISION PI, PHIM, PHIP, DELPHI, WTEST, XTEST, YTEST,
     >                 ZTEST, ZERO, ONE, HALF, QUART
      PARAMETER( PI=3.14159265358979D0, ZERO=0.D0, ONE=1.D0,
     >           HALF=0.5D0, QUART=0.25D0 )
* For "Optimized" Quadrature
      INTEGER I, I2, I3, I4, I5, IDEP, IFIN
      PARAMETER ( I2= 1, I3= 3, I4= 6, I5= 10)
      REAL     XOP0(I5-1), WOP0(I5-1) ! Quadrature which minimizes the error on Ki2 without constraints.
      REAL     XOP1(I5-1), WOP1(I5-1) ! Quadrature which minimizes the error on Ki2 with P1 constraints.
      REAL     XGOP(I5-1), WGOP(I5-1) ! Gauss optimized quadrature.
      SAVE XOP0, WOP0, XOP1, WOP1, XGOP, WGOP
* NG=2
      DATA (XOP0(I),I=I2,I3-1) / 0.273658, 0.865714/
      DATA (WOP0(I),I=I2,I3-1) / 0.139473, 0.860527/
      DATA (XOP1(I),I=I2,I3-1) / 0.340183, 0.894215/
      DATA (WOP1(I),I=I2,I3-1) / 0.194406, 0.805594/
      DATA (XGOP(I),I=I2,I3-1) / 0.399374, 0.914448/
      DATA (WGOP(I),I=I2,I3-1) / 0.250547, 0.749453/
* NG=3
      DATA (XOP0(I),I=I3,I4-1) / 0.891439, 0.395534, 0.099812/
      DATA (WOP0(I),I=I3,I4-1) / 0.793820, 0.188560, 0.017620/
      DATA (XOP1(I),I=I3,I4-1) / 0.131209, 0.478170, 0.920079/
      DATA (WOP1(I),I=I3,I4-1) / 0.029991, 0.250860, 0.719149/
      DATA (XGOP(I),I=I3,I4-1) / 0.231156, 0.639973, 0.954497/
      DATA (WGOP(I),I=I3,I4-1) / 0.085302, 0.341456, 0.573242/
* NG=4
      DATA (XOP0(I),I=I4,I5-1) / 0.464167, 0.908274, 0.166004, 0.042181/
      DATA (WOP0(I),I=I4,I5-1) / 0.218331, 0.746430, 0.032141, 0.003098/
      DATA (XOP1(I),I=I4,I5-1) / 0.054819, 0.212313, 0.546065, 0.932318/
      DATA (WOP1(I),I=I4,I5-1) / 0.005225, 0.051270, 0.272789, 0.670716/
      DATA (XGOP(I),I=I4,I5-1) / 0.152641, 0.450820, 0.769181, 0.972320/
      DATA (WGOP(I),I=I4,I5-1) / 0.037508, 0.167623, 0.338496, 0.456373/
!      DATA (XGOP(I),I=I5,I6-1) / 0.159153, 0.450941, 0.724750, 0.868405,
!     1                           0.980414/
!      DATA (WGOP(I),I=I5,I6-1) / 0.039977, 0.156595, 0.220669, 0.204037,
!     1                           0.378722/
*
      IF( LCACT.EQ.1 )THEN
*---
* CACTUS 1:
*---
*        Equal weight quadrature
         DELPHI= ONE/DBLE(NG)
         PHIM  = ZERO
         XTEST = ZERO
         DO 10 IG= 1, NG
            PHIP  = DBLE(IG) * DELPHI
            WTEST = PHIP - PHIM
            WG(IG)= REAL( WTEST )
            IF(IG.EQ.NG) THEN
               YTEST = PI/2.0
            ELSE
               YTEST = SQRT(ONE - PHIP * PHIP) * PHIP + ASIN(PHIP)
            ENDIF
            ZTEST = HALF * (YTEST - XTEST) / WTEST
            XG(IG)= REAL( SQRT(ONE - ZTEST*ZTEST) )
            PHIM  = PHIP
            XTEST = YTEST
 10      CONTINUE
      ELSEIF( LCACT.EQ.2 )THEN
*---
* CACTUS 2:
*---
*        Uniformly distributed angle quadrature
         DELPHI= PI/DBLE(2*NG)
         PHIM  = ZERO
         DO 20 IG= 1, NG
            PHIP  = DBLE(IG) * DELPHI
            WTEST = SIN(PHIP) - SIN(PHIM)
            WG(IG)= REAL( WTEST )
            XTEST = HALF * (PHIP - PHIM)
            YTEST = QUART * (SIN(PHIP+PHIP) - SIN(PHIM+PHIM))
            ZTEST = (XTEST + YTEST) / WTEST
            XG(IG)= REAL( SQRT(ONE - ZTEST*ZTEST) )
            PHIM= PHIP
 20      CONTINUE
      ELSEIF(( LCACT.GE.3 ).AND.( LCACT.LE.5 ))THEN
*---
* OPTIMIZED:
*---
         IDEP=0
         IFIN=0
         IF( NG.EQ.2 ) THEN
            IDEP=I2
            IFIN=I3-1
         ELSE IF( NG.EQ.3 ) THEN
            IDEP=I3
            IFIN=I4-1
         ELSE IF( NG.EQ.4 ) THEN
            IDEP=I4
            IFIN=I5-1
         ELSE
            CALL XABORT('ALCACT: LCACA=3 => NG= 2, 3 OR 4')
         ENDIF
         IF (LCACT.EQ.3) THEN
*        Quadrature which minimizes the error on Ki2 without constraints.   
            DO 30 IG= IDEP, IFIN
               XG(IG-IDEP+1)= REAL(SQRT(ONE - XOP0(IG)*XOP0(IG)))
               WG(IG-IDEP+1)= WOP0(IG)
 30         CONTINUE          
         ELSEIF (LCACT.EQ.4) THEN
*        Quadrature which minimizes the error on Ki2 with P1 constraints.
            DO 40 IG= IDEP, IFIN
               XG(IG-IDEP+1)= REAL(SQRT(ONE - XOP1(IG)*XOP1(IG)))
               WG(IG-IDEP+1)= WOP1(IG)
 40         CONTINUE 
         ELSEIF (LCACT.EQ.5) THEN
*        Gauss optimized quadrature.
            DO 50 IG= IDEP, IFIN
               XG(IG-IDEP+1)= REAL(SQRT(ONE - XGOP(IG)*XGOP(IG)))
               WG(IG-IDEP+1)= WGOP(IG)
 50         CONTINUE 
         ENDIF
      ELSE
         CALL XABORT('ALCACT: *LCACT* IN [1,5]') 
      ENDIF
      RETURN
      END